Fields and fluids on curved non-relativistic spacetimes

  • Michael Geracie
  • Kartik Prabhu
  • Matthew M. Roberts
Open Access
Regular Article - Theoretical Physics

Abstract

We consider non-relativistic curved geometries and argue that the background structure should be generalized from that considered in previous works. In this approach the derivative operator is defined by a Galilean spin connection valued in the Lie algebra of the Galilean group. This includes the usual spin connection plus an additional “boost connection” which parameterizes the freedom in the derivative operator not fixed by torsion or metric compatibility. As an example we write down the most general theory of dissipative fluids consistent with the second law in curved non-relativistic geometries and find significant differences in the allowed transport coefficients from those found previously. Kubo formulas for all response coefficients are presented. Our approach also immediately generalizes to systems with independent mass and charge currents as would arise in multicomponent fluids. Along the way we also discuss how to write general locally Galilean invariant non-relativistic actions for multiple particle species at any order in derivatives. A detailed review of the geometry and its relation to non-relativistic limits may be found in a companion paper.

Keywords

Differential and Algebraic Geometry Space-Time Symmetries 

References

  1. [1]
    E. Cartan, Sur les variétés à connexion affine et la théorie de la relativité généralisée, Ann. Sci. Ecole Norm. Sup. 40 (1923) 325.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    E. Cartan, Sur les variétés à connexion affine et la théorie de la relativité généralisée, Ann. Sci. Ecole Norm. Sup. 41 (1924) 1.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    H. Dombrowski and K. Horneffer, Die Differentialgeometrie des Galileischen Relativitätsprinzips, Math. Z. 86 (1964) 291.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    A. Trautman, Foundations and current problems of general relativity, Prentice-Hall, U.S.A. (1965).Google Scholar
  5. [5]
    H. P. Künzle, Galilei and Lorentz structures on space-time: comparison of the corresponding geometry and physics, Ann. Inst. H. Poincaré Sect. A (N.S.) 17 (1972) 337.Google Scholar
  6. [6]
    C. Duval and H. Künzle, Dynamics of continua and particles from general covariance of newtonian gravitation theory, Rept. Math. Phys. 13 (1978) 351.CrossRefADSMATHMathSciNetGoogle Scholar
  7. [7]
    K. Kuchař, Gravitation, geometry, and nonrelativistic quantum theory, Phys. Rev. D 22 (1980) 1285.ADSMathSciNetGoogle Scholar
  8. [8]
    C. Duval and H.P. Kunzle, Minimal gravitational coupling in the newtonian theory and the covariant Schrödinger equation, Gen. Rel. Grav. 16 (1984) 333 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  9. [9]
    C. Duval, G. Burdet, H.P. Kunzle and M. Perrin, Bargmann structures and Newton-Cartan theory, Phys. Rev. D 31 (1985) 1841 [INSPIRE].MathSciNetADSGoogle Scholar
  10. [10]
    R. Banerjee, A. Mitra and P. Mukherjee, A new formulation of non-relativistic diffeomorphism invariance, Phys. Lett. B 737 (2014) 369 [arXiv:1404.4491] [INSPIRE].ADSMATHGoogle Scholar
  11. [11]
    R. Banerjee, A. Mitra and P. Mukherjee, Localization of the galilean symmetry and dynamical realization of Newton-Cartan geometry, Class. Quant. Grav. 32 (2015) 045010 [arXiv:1407.3617] [INSPIRE].MathSciNetCrossRefADSMATHGoogle Scholar
  12. [12]
    R. Banerjee, A. Mitra and P. Mukherjee, General algorithm for nonrelativistic diffeomorphism invariance, Phys. Rev. D 91 (2015) 084021 [arXiv:1501.05468] [INSPIRE].ADSMathSciNetGoogle Scholar
  13. [13]
    B. Carter and I. Khalatnikov, Canonically covariant formulation of Landaus Newtonian superfluid dynamics, Rev. Math. Phys. 6 (1994) 277.MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    B. Carter and N. Chamel, Covariant analysis of newtonian multi-fluid models for neutron stars: I. Milne-Cartan structure and variational formulation, Int. J. Mod. Phys. D 13 (2004) 291 [astro-ph/0305186] [INSPIRE].MathSciNetCrossRefADSMATHGoogle Scholar
  15. [15]
    C. Hoyos and D.T. Son, Hall viscosity and electromagnetic response, Phys. Rev. Lett. 108 (2012) 066805 [arXiv:1109.2651] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    D.T. Son, Newton-Cartan geometry and the quantum Hall effect, arXiv:1306.0638 [INSPIRE].
  17. [17]
    A.G. Abanov and A. Gromov, Electromagnetic and gravitational responses of two-dimensional noninteracting electrons in a background magnetic field, Phys. Rev. B 90 (2014) 014435 [arXiv:1401.3703] [INSPIRE].CrossRefADSGoogle Scholar
  18. [18]
    A. Gromov and A.G. Abanov, Thermal Hall effect and geometry with torsion, Phys. Rev. Lett. 114 (2015) 016802 [arXiv:1407.2908] [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    M.H. Christensen, J. Hartong, N.A. Obers and B. Rollier, Torsional Newton-Cartan geometry and Lifshitz holography, Phys. Rev. D 89 (2014) 061901 [arXiv:1311.4794] [INSPIRE].ADSMATHGoogle Scholar
  20. [20]
    M.H. Christensen, J. Hartong, N.A. Obers and B. Rollier, Boundary stress-energy tensor and Newton-Cartan geometry in Lifshitz holography, JHEP 01 (2014) 057 [arXiv:1311.6471] [INSPIRE].MathSciNetCrossRefADSMATHGoogle Scholar
  21. [21]
    E.A. Bergshoeff, J. Hartong and J. Rosseel, Torsional Newton-Cartan geometry and the Schrödinger algebra, Class. Quant. Grav. 32 (2015) 135017 [arXiv:1409.5555] [INSPIRE].CrossRefADSMATHGoogle Scholar
  22. [22]
    J. Hartong, E. Kiritsis and N.A. Obers, Schrödinger invariance from Lifshitz isometries in holography and field theory, arXiv:1409.1522 [INSPIRE].
  23. [23]
    J. Hartong, E. Kiritsis and N.A. Obers, Lifshitz space-times for Schrödinger holography, Phys. Lett. B 746 (2015) 318 [arXiv:1409.1519] [INSPIRE].MathSciNetCrossRefADSMATHGoogle Scholar
  24. [24]
    J. Hartong, E. Kiritsis and N.A. Obers, Field theory on Newton-Cartan backgrounds and symmetries of the Lifshitz vacuum, arXiv:1502.00228 [INSPIRE].
  25. [25]
    J. Hartong and N.A. Obers, Hořava-Lifshitz gravity from dynamical Newton-Cartan geometry, arXiv:1504.07461 [INSPIRE].
  26. [26]
    D.T. Son and M. Wingate, General coordinate invariance and conformal invariance in nonrelativistic physics: unitary Fermi gas, Annals Phys. 321 (2006) 197 [cond-mat/0509786] [INSPIRE].MathSciNetCrossRefADSMATHGoogle Scholar
  27. [27]
    K. Jensen, On the coupling of Galilean-invariant field theories to curved spacetime, arXiv:1408.6855 [INSPIRE].
  28. [28]
    M. Geracie, K. Prabhu and M.M. Roberts, Curved non-relativistic spacetimes, Newtonian gravitation and massive matter, arXiv:1503.02682 [INSPIRE].
  29. [29]
    L.D. Landau and E. Lifshitz, Theory of elasticity, Course of Theoretical Physics, Pergamon Press (1986).Google Scholar
  30. [30]
    T.L. Hughes, R.G. Leigh and O. Parrikar, Torsional anomalies, Hall viscosity and bulk-boundary correspondence in topological states, Phys. Rev. D 88 (2013) 025040 [arXiv:1211.6442] [INSPIRE].ADSGoogle Scholar
  31. [31]
    J. Luttinger, Theory of Thermal transport coefficients, Phys. Rev. 135 (1964) A1505.MathSciNetCrossRefADSGoogle Scholar
  32. [32]
    M. Geracie, D.T. Son, C. Wu and S.-F. Wu, Spacetime symmetries of the quantum Hall effect, Phys. Rev. D 91 (2015) 045030 [arXiv:1407.1252] [INSPIRE].ADSMathSciNetGoogle Scholar
  33. [33]
    K. Jensen, Aspects of hot Galilean field theory, JHEP 04 (2015) 123 [arXiv:1411.7024] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  34. [34]
    T. Frankel, The geometry of physics: an introduction, Cambridge University Press, Cambridge U.K. (2011).CrossRefMATHGoogle Scholar
  35. [35]
    C. Duval and P.A. Horvathy, Non-relativistic conformal symmetries and Newton-Cartan structures, J. Phys. A 42 (2009) 465206 [arXiv:0904.0531] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  36. [36]
    L. Landau and E. Lifshitz, Fluid mechanics, Course of Theoretical Physics, Pergamon Press (1987).Google Scholar
  37. [37]
    S. Janiszewski and A. Karch, Non-relativistic holography from Hořava gravity, JHEP 02 (2013) 123 [arXiv:1211.0005] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  38. [38]
    O. Andreev, M. Haack and S. Hofmann, On nonrelativistic diffeomorphism invariance, Phys. Rev. D 89 (2014) 064012 [arXiv:1309.7231] [INSPIRE].ADSGoogle Scholar
  39. [39]
    V. Bargmann, On unitary ray representations of continuous groups, Ann. Math. 59 (1954) 1.MathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    J.-M. Levy-Leblond, Nonrelativistic particles and wave equations, Commun. Math. Phys. 6 (1967) 286.MathSciNetCrossRefADSMATHGoogle Scholar
  41. [41]
    M. de Montigny, J. Niederle and A. G. Nikitin, Galilei invariant theories: I. constructions of indecomposable finite-dimensional representations of the homogeneous galilei group: directly and via contractions, J. Phys. A 39 (2006) 9365 [math-ph/0604002].
  42. [42]
    J. Niederle and A.G. Nikitin, Galilei invariant theories. II. Wave equations for massive fields, arXiv:0707.3286 [INSPIRE].
  43. [43]
    K. Jensen, M. Kaminski, P. Kovtun, R. Meyer, A. Ritz and A. Yarom, Parity-violating hydrodynamics in 2 + 1 dimensions, JHEP 05 (2012) 102 [arXiv:1112.4498] [INSPIRE].CrossRefADSGoogle Scholar
  44. [44]
    J. Bhattacharya, S. Bhattacharyya, S. Minwalla and A. Yarom, A theory of first order dissipative superfluid dynamics, JHEP 05 (2014) 147 [arXiv:1105.3733] [INSPIRE].CrossRefADSGoogle Scholar
  45. [45]
    M. Geracie, S. Golkar and M.M. Roberts, Hall viscosity, spin density and torsion, arXiv:1410.2574 [INSPIRE].
  46. [46]
    M. Geracie and D.T. Son, Hydrodynamics on the lowest Landau level, JHEP 06 (2015) 044 [arXiv:1408.6843] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  47. [47]
    J. Bhattacharya, S. Bhattacharyya and S. Minwalla, Dissipative superfluid dynamics from gravity, JHEP 04 (2011) 125 [arXiv:1101.3332] [INSPIRE].CrossRefADSGoogle Scholar
  48. [48]
    R. Kubo, M. Yokota and S. Nakajima, Statistical-mechanical theory of irreversible processes. ii. response to thermal disturbance, J. Phys. Soc. Jpn. 12 (1957) 1203.MathSciNetCrossRefADSGoogle Scholar
  49. [49]
    B. Bradlyn, M. Goldstein and N. Read, Kubo formulas for viscosity: Hall viscosity, Ward identities and the relation with conductivity, Phys. Rev. B 86 (2012) 245309 [arXiv:1207.7021] [INSPIRE].CrossRefADSMATHGoogle Scholar
  50. [50]
    R. Kubo, Statistical-mechanical theory of irreversible processes. I. general theory and simple applications to magnetic and conduction problems, J. Phys. Soc. Jpn. 12 (1957) 570.MathSciNetCrossRefADSGoogle Scholar
  51. [51]
    M. Greiter, F. Wilczek and E. Witten, Hydrodynamic relations in superconductivity, Mod. Phys. Lett. B 3 (1989) 903 [INSPIRE].CrossRefADSGoogle Scholar
  52. [52]
    X.G. Wen and A. Zee, Shift and spin vector: new topological quantum numbers for the Hall fluids, Phys. Rev. Lett. 69 (1992) 953 [Erratum ibid. 69 (1992) 3000] [INSPIRE].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Michael Geracie
    • 1
  • Kartik Prabhu
    • 1
  • Matthew M. Roberts
    • 1
  1. 1.Kadanoff Center for Theoretical Physics, Enrico Fermi Institute and Department of PhysicsUniversity of ChicagoChicagoU.S.A.

Personalised recommendations