Advertisement

An analytic result for the two-loop seven-point MHV amplitude in \( \mathcal{N} \) = 4 SYM

  • John Golden
  • Marcus SpradlinEmail author
Open Access
Article

Abstract

We describe a general algorithm which builds on several pieces of data available in the literature to construct explicit analytic formulas for two-loop MHV amplitudes in \( \mathcal{N} \) = 4 super-Yang-Mills theory. The non-classical part of an amplitude is built from A 3 cluster polylogarithm functions; classical polylogarithms with (negative) cluster \( \mathcal{X} \) - coordinate arguments are added to complete the symbol of the amplitude; beyond-the-symbol terms proportional to π 2 are determined by comparison with the differential of the amplitude; and the overall additive constant is fixed by the collinear limit. We present an explicit formula for the seven-point amplitude R 7 (2) as a sample application.

Keywords

Supersymmetric gauge theory Scattering Amplitudes Differential and Algebraic Geometry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  2. [2]
    J. Golden, A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Motivic amplitudes and cluster coordinates, JHEP 01 (2014) 091 [arXiv:1305.1617] [INSPIRE].CrossRefGoogle Scholar
  3. [3]
    J. Golden and M. Spradlin, The differential of all two-loop MHV amplitudes in \( \mathcal{N} \) = 4 Yang-Mills theory, JHEP 09 (2013) 111 [arXiv:1306.1833] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    J. Golden, M.F. Paulos, M. Spradlin and A. Volovich, Cluster polylogarithms for scattering amplitudes, arXiv:1401.6446 [INSPIRE].
  5. [5]
    A.B. Goncharov, Galois symmetries of fundamental groupoids and noncommutative geometry, Duke Math. J. 128 (2005) 209 [math.AG/0208144] [INSPIRE].CrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    V.V. Fock and A.B. Goncharov, Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. 42 (2009) 865 [math.AG/0311245] [INSPIRE].zbMATHMathSciNetGoogle Scholar
  7. [7]
    L. Brink, J.H. Schwarz and J. Scherk, Supersymmetric Yang-Mills theories, Nucl. Phys. B 121 (1977) 77 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    C. Anastasiou, Z. Bern, L.J. Dixon and D.A. Kosower, Planar amplitudes in maximally supersymmetric Yang-Mills theory, Phys. Rev. Lett. 91 (2003) 251602 [hep-th/0309040] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].ADSMathSciNetGoogle Scholar
  10. [10]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, On planar gluon amplitudes/Wilson loops duality, Nucl. Phys. B 795 (2008) 52 [arXiv:0709.2368] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys. B 826 (2010) 337 [arXiv:0712.1223] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, The hexagon Wilson loop and the BDS ansatz for the six-gluon amplitude, Phys. Lett. B 662 (2008) 456 [arXiv:0712.4138] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    J. Golden et al., The cluster bootstrap for 2-loop MHV amplitudes, unpublished notes, to appear.Google Scholar
  14. [14]
    S. Caron-Huot, Superconformal symmetry and two-loop amplitudes in planar \( \mathcal{N} \) = 4 super Yang-Mills, JHEP 12 (2011) 066 [arXiv:1105.5606] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    Z. Bern et al., The two-loop six-gluon MHV amplitude in maximally supersymmetric Yang-Mills theory, Phys. Rev. D 78 (2008) 045007 [arXiv:0803.1465] [INSPIRE].ADSMathSciNetGoogle Scholar
  16. [16]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Hexagon Wilson loop = six-gluon MHV amplitude, Nucl. Phys. B 815 (2009) 142 [arXiv:0803.1466] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    C. Anastasiou et al., Two-loop polygon Wilson loops in \( \mathcal{N} \) = 4 SYM, JHEP 05 (2009) 115 [arXiv:0902.2245] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    A. Brandhuber, P. Heslop, V.V. Khoze and G. Travaglini, Simplicity of polygon Wilson loops in \( \mathcal{N} \) = 4 SYM, JHEP 01 (2010) 050 [arXiv:0910.4898] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    V. Del Duca, C. Duhr and V.A. Smirnov, A two-loop octagon Wilson loop in \( \mathcal{N} \) = 4 SYM, JHEP 09 (2010) 015 [arXiv:1006.4127] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    P. Heslop and V.V. Khoze, Analytic results for MHV Wilson loops, JHEP 11 (2010) 035 [arXiv:1007.1805] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, Bootstrapping null polygon Wilson loops, JHEP 03 (2011) 092 [arXiv:1010.5009] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    L.J. Dixon, J.M. Drummond and J.M. Henn, Analytic result for the two-loop six-point NMHV amplitude in \( \mathcal{N} \) = 4 super Yang-Mills theory, JHEP 01 (2012) 024 [arXiv:1111.1704] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    L.J. Dixon, J.M. Drummond and J.M. Henn, Bootstrapping the three-loop hexagon, JHEP 11 (2011) 023 [arXiv:1108.4461] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    L.J. Dixon, J.M. Drummond, M. von Hippel and J. Pennington, Hexagon functions and the three-loop remainder function, JHEP 12 (2013) 049 [arXiv:1308.2276] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    L.J. Dixon, J.M. Drummond, C. Duhr and J. Pennington, The four-loop remainder function and multi-Regge behavior at NNLLA in planar \( \mathcal{N} \) = 4 super-Yang-Mills theory, JHEP 06 (2014) 116 [arXiv:1402.3300] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic functions, JHEP 10 (2012) 075 [arXiv:1110.0458] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  27. [27]
    A.B. Goncharov, Polylogarithms and motivic Galois groups, in Motives (Seattle U.S.A. 1991), Proc. Sympos. Pure Math. 55, Amer. Math. Soc., Providence U.S.A. (1994), pg. 43.Google Scholar
  28. [28]
    A. Goncharov, Geometry of configurations, polylogarithms, and motivic cohomology, Adv. Math. 114 (1995) 197.CrossRefzbMATHMathSciNetGoogle Scholar
  29. [29]
    A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP 05 (2013) 135 [arXiv:0905.1473] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  30. [30]
    J. Bartels, A. Kormilitzin, L.N. Lipatov and A. Prygarin, BFKL approach and 2 → 5 maximally helicity violating amplitude in \( \mathcal{N} \) = 4 super-Yang-Mills theory, Phys. Rev. D 86 (2012) 065026 [arXiv:1112.6366] [INSPIRE].ADSGoogle Scholar
  31. [31]
    J. Bartels, A. Kormilitzin and L. Lipatov, Analytic structure of the n = 7 scattering amplitude in \( \mathcal{N} \) = 4 SYM theory at multi-Regge kinematics: conformal Regge pole contribution, Phys. Rev. D 89 (2014) 065002 [arXiv:1311.2061] [INSPIRE].ADSGoogle Scholar
  32. [32]
    J. Bartels, V. Schomerus and M. Sprenger, Heptagon amplitude in the multi-Regge regime, JHEP (2014) [arXiv:1405.3658] [INSPIRE].
  33. [33]
    A. Goncharov, Deningers conjecture on L-functions of elliptic curves at s = 3, J. Math. Sci. 81 (1996) 2631 [alg-geom/9512016].CrossRefzbMATHMathSciNetGoogle Scholar
  34. [34]
    B. Basso, Exciting the GKP string at any coupling, Nucl. Phys. B 857 (2012) 254 [arXiv:1010.5237] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  35. [35]
    B. Basso, A. Sever and P. Vieira, Spacetime and flux tube S-matrices at finite coupling for \( \mathcal{N} \) =4 supersymmetric Yang-Mills theory, Phys. Rev. Lett. 111 (2013) 091602 [arXiv:1303.1396] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    B. Basso, A. Sever and P. Vieira, Space-time S-matrix and flux tube S-matrix II. Extracting and matching data, JHEP 01 (2014) 008 [arXiv:1306.2058] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    G. Papathanasiou, Hexagon Wilson loop OPE and harmonic polylogarithms, JHEP 11 (2013) 150 [arXiv:1310.5735] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    B. Basso, A. Sever and P. Vieira, Space-time S-matrix and flux-tube S-matrix III. The two-particle contributions, JHEP 08 (2014) 085 [arXiv:1402.3307] [INSPIRE].CrossRefGoogle Scholar
  39. [39]
    J. Bartels, L.N. Lipatov and A. Sabio Vera, BFKL Pomeron, Reggeized gluons and Bern-Dixon-Smirnov amplitudes, Phys. Rev. D 80 (2009) 045002 [arXiv:0802.2065] [INSPIRE].ADSGoogle Scholar
  40. [40]
    J. Bartels, L.N. Lipatov and A. Sabio Vera, \( \mathcal{N} \) = 4 supersymmetric Yang-Mills scattering amplitudes at high energies: the Regge cut contribution, Eur. Phys. J. C 65 (2010) 587 [arXiv:0807.0894] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    R.M. Schabinger, The imaginary part of the \( \mathcal{N} \) = 4 super-Yang-Mills two-loop six-point MHV amplitude in multi-Regge kinematics, JHEP 11 (2009) 108 [arXiv:0910.3933] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  42. [42]
    L.N. Lipatov and A. Prygarin, Mandelstam cuts and light-like Wilson loops in \( \mathcal{N} \) = 4 SUSY, Phys. Rev. D 83 (2011) 045020 [arXiv:1008.1016] [INSPIRE].ADSGoogle Scholar
  43. [43]
    L.N. Lipatov and A. Prygarin, BFKL approach and six-particle MHV amplitude in \( \mathcal{N} \) = 4 super Yang-Mills, Phys. Rev. D 83 (2011) 125001 [arXiv:1011.2673] [INSPIRE].ADSGoogle Scholar
  44. [44]
    J. Bartels, L.N. Lipatov and A. Prygarin, MHV amplitude for 3 → 3 gluon scattering in Regge limit, Phys. Lett. B 705 (2011) 507 [arXiv:1012.3178] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    V.S. Fadin and L.N. Lipatov, BFKL equation for the adjoint representation of the gauge group in the next-to-leading approximation at \( \mathcal{N} \) = 4 SUSY, Phys. Lett. B 706 (2012) 470 [arXiv:1111.0782] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    L.J. Dixon, C. Duhr and J. Pennington, Single-valued harmonic polylogarithms and the multi-Regge limit, JHEP 10 (2012) 074 [arXiv:1207.0186] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    N. Arkani-Hamed, S. Caron-Huot and J. Trnka, private communication.Google Scholar
  48. [48]
    V. Del Duca, C. Duhr and V.A. Smirnov, An analytic result for the two-loop hexagon Wilson loop in \( \mathcal{N} \) = 4 SYM, JHEP 03 (2010) 099 [arXiv:0911.5332] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    V. Del Duca, C. Duhr and V.A. Smirnov, The two-loop hexagon Wilson loop in \( \mathcal{N} \) = 4 SYM, JHEP 05 (2010) 084 [arXiv:1003.1702] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Department of PhysicsBrown UniversityProvidenceU.S.A.

Personalised recommendations