Lepton Portal dark matter

  • Yang BaiEmail author
  • Joshua Berger
Open Access


We study a class of simplified dark matter models in which dark matter couples directly with a mediator and a charged lepton. This class of Lepton Portal dark matter models has very rich phenomenology: it has loop generated dark matter electromagnetic moments that generate a direct detection signal; it contributes to indirect detection in the cosmic positron flux via dark matter annihilation; it provides a signature of the same-flavor, opposite-sign dilepton plus missing transverse energy at colliders. We determine the current experimental constraints on the model parameter space for Dirac fermion, Majorana fermion and complex scalar dark matter cases of the Lepton Portal framework. We also perform a collider study for the 14 TeV LHC reach with 100 inverse femtobarns for dark matter parameter space. For the complex scalar dark matter case, the LHC provides a very stringent constraint and its reach can be interpreted as corresponding to a limit as strong as two tenths of a zeptobarn on the dark matter-nucleon scattering cross section for dark matter masses up to 500 GeV. We also demonstrate that one can improve the current collider searches by using a Breit-Wigner like formula to fit the dilepton MT2 tail of the dominant diboson background.


Beyond Standard Model Cosmology of Theories beyond the SM 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    H.E. Haber and G.L. Kane, The Search for Supersymmetry: Probing Physics Beyond the Standard Model, Phys. Rept. 117 (1985) 75 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M.W. Cahill-Rowley, J.L. Hewett, A. Ismail and T.G. Rizzo, More energy, more searches, but the phenomenological MSSM lives on, Phys. Rev. D 88 (2013) 035002 [arXiv:1211.1981] [INSPIRE].ADSGoogle Scholar
  4. [4]
    M. Cahill-Rowley et al., Complementarity and Searches for Dark Matter in the pMSSM, arXiv:1305.6921 [INSPIRE].
  5. [5]
    E.W. Kolb and M.S. Turner, The Early Universe, Front. Phys. 69 (1990) 1.ADSMathSciNetGoogle Scholar
  6. [6]
    S. Chang, R. Edezhath, J. Hutchinson and M. Luty, Effective WIMPs, Phys. Rev. D 89 (2014) 015011 [arXiv:1307.8120] [INSPIRE].ADSGoogle Scholar
  7. [7]
    H. An, L.-T. Wang and H. Zhang, Dark matter with t-channel mediator: a simple step beyond contact interaction, Phys. Rev. D 89 (2014) 115014 [arXiv:1308.0592] [INSPIRE].ADSGoogle Scholar
  8. [8]
    Y. Bai and J. Berger, Fermion Portal Dark Matter, JHEP 11 (2013) 171 [arXiv:1308.0612] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A. DiFranzo, K.I. Nagao, A. Rajaraman and T.M.P. Tait, Simplified Models for Dark Matter Interacting with Quarks, JHEP 11 (2013) 014 [arXiv:1308.2679] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    O. Buchmueller, M.J. Dolan and C. McCabe, Beyond effective field theory for dark matter searches at the LHC, JHEP 01 (2014) 025 [arXiv:1308.6799] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    C. Cheung and D. Sanford, Simplified models of mixed dark matter, JCAP 02 (2014) 011 [arXiv:1311.5896] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    M. Papucci, A. Vichi and K.M. Zurek, Monojet versus rest of the world I: t-channel Models, arXiv:1402.2285 [INSPIRE].
  13. [13]
    A. De Simone, G.F. Giudice and A. Strumia, Benchmarks for dark matter searches at the LHC, JHEP 06 (2014) 081 [arXiv:1402.6287] [INSPIRE].CrossRefGoogle Scholar
  14. [14]
    P.J. Fox and E. Poppitz, Leptophilic Dark Matter, Phys. Rev. D 79 (2009) 083528 [arXiv:0811.0399] [INSPIRE].ADSGoogle Scholar
  15. [15]
    S. Baek and P. Ko, Phenomenology of \( \mathrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} \) charged dark matter at PAMELA and colliders, JCAP 10 (2009) 011 [arXiv:0811.1646] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    P.-f. Yin, J. Liu and S.-h. Zhu, Detecting light leptophilic gauge boson at BESIII detector, Phys. Lett. B 679 (2009) 362 [arXiv:0904.4644] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    AMS collaboration, M. Aguilar et al., First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5-350 GeV, Phys. Rev. Lett. 110 (2013) 141102 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    B. Bertucci, Positron+electron spectrum from 0.5 gev to 700 gev, Technical Report AMS at 33rd International Cosmic Ray Conference (ICRC 2013), Rio de Janeiro Brazil (2013).Google Scholar
  20. [20]
    V. Barger, W.-Y. Keung and G. Shaughnessy, Spin Dependence of Dark Matter Scattering, Phys. Rev. D 78 (2008) 056007 [arXiv:0806.1962] [INSPIRE].ADSGoogle Scholar
  21. [21]
    B. Batell, T. Lin and L.-T. Wang, Flavored Dark Matter and R-Parity Violation, JHEP 01 (2014) 075 [arXiv:1309.4462] [INSPIRE].CrossRefGoogle Scholar
  22. [22]
    J.R. Ellis, T. Falk, K.A. Olive and M. Srednicki, Calculations of neutralino-stau coannihilation channels and the cosmologically relevant region of MSSM parameter space, Astropart. Phys. 13 (2000) 181 [Erratum ibid. 15 (2001) 413] [hep-ph/9905481] [INSPIRE].
  23. [23]
    R.L. Arnowitt et al., Determining the Dark Matter Relic Density in the Minimal Supergravity Stau-Neutralino Coannihilation Region at the Large Hadron Collider, Phys. Rev. Lett. 100 (2008) 231802 [arXiv:0802.2968] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J. Kopp, V. Niro, T. Schwetz and J. Zupan, DAMA/LIBRA and leptonically interacting Dark Matter, Phys. Rev. D 80 (2009) 083502 [arXiv:0907.3159] [INSPIRE].ADSGoogle Scholar
  25. [25]
    P. Agrawal, S. Blanchet, Z. Chacko and C. Kilic, Flavored Dark Matter and Its Implications for Direct Detection and Colliders, Phys. Rev. D 86 (2012) 055002 [arXiv:1109.3516] [INSPIRE].ADSGoogle Scholar
  26. [26]
    A.L. Fitzpatrick and K.M. Zurek, Dark Moments and the DAMA-CoGeNT Puzzle, Phys. Rev. D 82 (2010) 075004 [arXiv:1007.5325] [INSPIRE].ADSGoogle Scholar
  27. [27]
    C.M. Ho and R.J. Scherrer, Anapole Dark Matter, Phys. Lett. B 722 (2013) 341 [arXiv:1211.0503] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  28. [28]
    E. Del Nobile, G.B. Gelmini, P. Gondolo and J.-H. Huh, Direct detection of Light Anapole and Magnetic Dipole DM, JCAP 06 (2014) 002 [arXiv:1401.4508] [INSPIRE].CrossRefGoogle Scholar
  29. [29]
    P. Raghavan, Table of nuclear moments, Atom. Data Nucl. Data Tabl. 42 (1989) 189.ADSCrossRefGoogle Scholar
  30. [30]
    T. Banks, J.-F. Fortin and S. Thomas, Direct Detection of Dark Matter Electromagnetic Dipole Moments, arXiv:1007.5515 [INSPIRE].
  31. [31]
    CTA Consortium collaboration, M. Actis et al., Design concepts for the Cherenkov Telescope Array CTA: An advanced facility for ground-based high-energy gamma-ray astronomy, Exper. Astron. 32 (2011) 193 [arXiv:1008.3703] [INSPIRE].
  32. [32]
    M. Garny, A. Ibarra, M. Pato and S. Vogl, Closing in on mass-degenerate dark matter scenarios with antiprotons and direct detection, JCAP 11 (2012) 017 [arXiv:1207.1431] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    M. Garny, A. Ibarra, M. Pato and S. Vogl, Internal bremsstrahlung signatures in light of direct dark matter searches, JCAP 12 (2013) 046 [arXiv:1306.6342] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    PAMELA collaboration, O. Adriani et al., An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV, Nature 458 (2009) 607 [arXiv:0810.4995] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    Fermi LAT collaboration, M. Ackermann et al., Measurement of separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope, Phys. Rev. Lett. 108 (2012) 011103 [arXiv:1109.0521] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    I. Cholis and D. Hooper, Dark Matter and Pulsar Origins of the Rising Cosmic Ray Positron Fraction in Light of New Data From AMS, Phys. Rev. D 88 (2013) 023013 [arXiv:1304.1840] [INSPIRE].ADSGoogle Scholar
  37. [37]
    M. Cirelli, R. Franceschini and A. Strumia, Minimal Dark Matter predictions for galactic positrons, anti-protons, photons, Nucl. Phys. B 800 (2008) 204 [arXiv:0802.3378] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    Y. Bai, M. Carena and J. Lykken, The PAMELA excess from neutralino annihilation in the NMSSM, Phys. Rev. D 80 (2009) 055004 [arXiv:0905.2964] [INSPIRE].ADSGoogle Scholar
  39. [39]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  40. [40]
    T. Delahaye, R. Lineros, F. Donato, N. Fornengo and P. Salati, Positrons from dark matter annihilation in the galactic halo: Theoretical uncertainties, Phys. Rev. D 77 (2008) 063527 [arXiv:0712.2312] [INSPIRE].ADSGoogle Scholar
  41. [41]
    L. Bergstrom, T. Bringmann, I. Cholis, D. Hooper and C. Weniger, New limits on dark matter annihilation from AMS cosmic ray positron data, Phys. Rev. Lett. 111 (2013) 171101 [arXiv:1306.3983] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    A. Ibarra, A.S. Lamperstorfer and J. Silk, Dark matter annihilations and decays after the AMS-02 positron measurements, Phys. Rev. D 89 (2014) 063539 [arXiv:1309.2570] [INSPIRE].ADSGoogle Scholar
  43. [43]
    W. Beenakker, R. Hopker and M. Spira, PROSPINO: A Program for the production of supersymmetric particles in next-to-leading order QCD, hep-ph/9611232 [INSPIRE].
  44. [44]
    B. Fuks, M. Klasen, D.R. Lamprea and M. Rothering, Revisiting slepton pair production at the Large Hadron Collider, JHEP 01 (2014) 168 [arXiv:1310.2621] [INSPIRE].CrossRefGoogle Scholar
  45. [45]
    ATLAS collaboration, Search for direct-slepton and direct-chargino production in final states with two opposite-sign leptons, missing transverse momentum and no jets in 20/fb of pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2013-049 (2013).
  46. [46]
    CMS collaboration, Search for electroweak production of charginos, neutralinos and sleptons using leptonic final states in pp collisions at 8 TeV, CMS-PAS-SUS-13-006 (2013).
  47. [47]
    K.T. Matchev and M. Park, A General method for determining the masses of semi-invisibly decaying particles at hadron colliders, Phys. Rev. Lett. 107 (2011) 061801 [arXiv:0910.1584] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    D.R. Tovey, On measuring the masses of pair-produced semi-invisibly decaying particles at hadron colliders, JHEP 04 (2008) 034 [arXiv:0802.2879] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    M.R. Buckley, J.D. Lykken, C. Rogan and M. Spiropulu, Super-Razor and Searches for Sleptons and Charginos at the LHC, Phys. Rev. D 89 (2014) 055020 [arXiv:1310.4827] [INSPIRE].ADSGoogle Scholar
  50. [50]
    C.G. Lester and D.J. Summers, Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders, Phys. Lett. B 463 (1999) 99 [hep-ph/9906349] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    A. Barr, C. Lester and P. Stephens, m(T2): The Truth behind the glamour, J. Phys. G 29 (2003) 2343 [hep-ph/0304226] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    H.-C. Cheng and Z. Han, Minimal Kinematic Constraints and m(T2), JHEP 12 (2008) 063 [arXiv:0810.5178] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    P. Konar, K. Kong, K.T. Matchev and M. Park, Dark Matter Particle Spectroscopy at the LHC: Generalizing M(T2) to Asymmetric Event Topologies, JHEP 04 (2010) 086 [arXiv:0911.4126] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    Y. Kats, P. Meade, M. Reece and D. Shih, The Status of GMSB After 1/fb at the LHC, JHEP 02 (2012) 115 [arXiv:1110.6444] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    Y. Bai, H.-C. Cheng, J. Gallicchio and J. Gu, Stop the Top Background of the Stop Search, JHEP 07 (2012) 110 [arXiv:1203.4813] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    C. Kilic and B. Tweedie, Cornering Light Stops with Dileptonic mT2, JHEP 04 (2013) 110 [arXiv:1211.6106] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    Y. Bai, H.-C. Cheng, J. Gallicchio and J. Gu, A toolkit of the stop search via the chargino decay, JHEP 08 (2013) 085 [arXiv:1304.3148] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    UA1 collaboration, G. Arnison et al., Experimental Observation of Isolated Large Transverse Energy Electrons with Associated Missing Energy at \( \sqrt{s} \) = 540 GeV, Phys. Lett. B 122 (1983) 103 [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    W. van Neerven, J. Vermaseren and K. Gaemers, Lepton - jet events as a signature for W production in p anti-p collisions, NIKHEF-H/82-20 (1982).Google Scholar
  60. [60]
    V.D. Barger, A.D. Martin and R.J.N. Phillips, Perpendicular ν e Mass From W Decay, Z. Phys. C 21 (1983) 99 [INSPIRE].ADSGoogle Scholar
  61. [61]
    J. Smith, W.L. van Neerven and J.A.M. Vermaseren, The Transverse Mass and Width of the W Boson, Phys. Rev. Lett. 50 (1983) 1738 [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    N.D. Christensen and C. Duhr, FeynRulesFeynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    J.S. Conway, Pretty Good Simulation of high-energy collisions, 090401 release.Google Scholar
  65. [65]
    D0 collaboration, V.M. Abazov et al., Direct measurement of the W boson width, Phys. Rev. Lett. 103 (2009) 231802 [arXiv:0909.4814] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    K. Hagiwara, R. Liao, A.D. Martin, D. Nomura and T. Teubner, (g − 2)μ and α(M Z2) re-evaluated using new precise data, J. Phys. G 38 (2011) 085003 [arXiv:1105.3149] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    Muon G-2 collaboration, G.W. Bennett et al., Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].ADSGoogle Scholar
  68. [68]
    B.L. Roberts, Status of the Fermilab Muon (g − 2) Experiment, Chin. Phys. C 34 (2010) 741 [arXiv:1001.2898] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    T. Blum et al., The Muon (g-2) Theory Value: Present and Future, arXiv:1311.2198 [INSPIRE].
  70. [70]
    T. Moroi, The Muon anomalous magnetic dipole moment in the minimal supersymmetric standard model, Phys. Rev. D 53 (1996) 6565 [Erratum ibid. D 56 (1997) 4424] [hep-ph/9512396] [INSPIRE].
  71. [71]
    M.S. Carena, G.F. Giudice and C.E.M. Wagner, Constraints on supersymmetric models from the muon anomalous magnetic moment, Phys. Lett. B 390 (1997) 234 [hep-ph/9610233] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of WisconsinMadisonU.S.A.
  2. 2.SLAC National Accelerator LaboratoryMenlo ParkU.S.A.

Personalised recommendations