# Leptophilic dark matter and the anomalous magnetic moment of the muon

## Abstract

We consider renormalizable theories such that the scattering of dark matter off leptons arises at tree level, but scattering off nuclei only arises at loop. In this framework, the various dark matter candidates can be classified by their spins and by the forms of their interactions with leptons. We determine the corrections to the anomalous magnetic moment of the muon that arise from its interactions with dark matter. We then consider the implications of these results for a set of simplified models of leptophilic dark matter. When a dark matter candidate reduces the existing tension between the standard model prediction of the anomalous magnetic moment and the experimental measurement, the region of parameter space favored to completely remove the discrepancy is highlighted. Conversely, when agreement is worsened, we place limits on the parameters of the corresponding simplified model. These bounds and favored regions are compared against the experimental constraints on the simplified model from direct detection and from collider searches. Although these constraints are severe, we find there do exist limited regions of parameter space in these simple theories that can explain the observed anomaly in the muon magnetic moment while remaining consistent with all experimental bounds.

## Keywords

Phenomenological Models## Notes

### **Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## References

- [1]Particle Data Group collaboration, J. Beringer et al.,
*Review of particle physics (RPP)*,*Phys. Rev.***D 86**(2012) 010001 [INSPIRE].ADSGoogle Scholar - [2]CMS collaboration,
*Observation of a new boson at a mass of*125*GeV with the CMS experiment at the LHC*,*Phys. Lett.***B 716**(2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar - [3]ATLAS collaboration,
*Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC*,*Phys. Lett.***B 716**(2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar - [4]Planck collaboration, P.A.R. Ade et al.,
*Planck*2013*results. XVI. Cosmological parameters*,*Astron. Astrophys.*(2014) [arXiv:1303.5076] [INSPIRE]. - [5]B.W. Lee and S. Weinberg,
*Cosmological lower bound on heavy neutrino masses*,*Phys. Rev. Lett.***39**(1977) 165 [INSPIRE].ADSGoogle Scholar - [6]M.I. Vysotsky, A.D. Dolgov and Y. Zeldovich,
*Cosmological restriction on neutral lepton masses*,*JETP Lett.***26**(1977) 188 [*Pisma Zh. Eksp. Teor. Fiz.***26**(1977) 200] [INSPIRE]. - [7]S. Nussinov,
*Technocosmology: could a technibaryon excess provide a*‘*natural*’*missing mass candidate?*,*Phys. Lett.***B 165**(1985) 55 [INSPIRE].ADSGoogle Scholar - [8]G.B. Gelmini, L.J. Hall and M.J. Lin,
*What is the cosmion?*,*Nucl. Phys.***B 281**(1987) 726 [INSPIRE].ADSGoogle Scholar - [9]D.N. Spergel and W.H. Press,
*Effect of hypothetical, weakly interacting, massive particles on energy transport in the solar interior*,*Astrophys. J.***294**(1985) 663 [INSPIRE].ADSGoogle Scholar - [10]S.M. Barr, R.S. Chivukula and E. Farhi,
*Electroweak fermion number violation and the production of stable particles in the early universe*,*Phys. Lett.***B 241**(1990) 387 [INSPIRE].ADSGoogle Scholar - [11]S.M. Barr,
*Baryogenesis, sphalerons and the cogeneration of dark matter*,*Phys. Rev.***D 44**(1991) 3062 [INSPIRE].ADSGoogle Scholar - [12]D.B. Kaplan,
*A single explanation for both the baryon and dark matter densities*,*Phys. Rev. Lett.***68**(1992) 741 [INSPIRE].ADSGoogle Scholar - [13]S.B. Gudnason, C. Kouvaris and F. Sannino,
*Towards working technicolor: effective theories and dark matter*,*Phys. Rev.***D 73**(2006) 115003 [hep-ph/0603014] [INSPIRE].ADSGoogle Scholar - [14]S.B. Gudnason, C. Kouvaris and F. Sannino,
*Dark matter from new technicolor theories*,*Phys. Rev.***D 74**(2006) 095008 [hep-ph/0608055] [INSPIRE].ADSGoogle Scholar - [15]R. Kitano and I. Low,
*Dark matter from baryon asymmetry*,*Phys. Rev.***D 71**(2005) 023510 [hep-ph/0411133] [INSPIRE].ADSGoogle Scholar - [16]R. Kitano and I. Low,
*Grand unification, dark matter, baryon asymmetry and the small scale structure of the universe*, hep-ph/0503112 [INSPIRE]. - [17]D.E. Kaplan, M.A. Luty and K.M. Zurek,
*Asymmetric dark matter*,*Phys. Rev.***D 79**(2009) 115016 [arXiv:0901.4117] [INSPIRE].ADSGoogle Scholar - [18]K.M. Zurek,
*Asymmetric dark matter: theories, signatures and constraints*,*Phys. Rept.***537**(2014) 91 [arXiv:1308.0338] [INSPIRE].ADSGoogle Scholar - [19]L.M. Krauss, S. Nasri and M. Trodden,
*A model for neutrino masses and dark matter*,*Phys. Rev.***D 67**(2003) 085002 [hep-ph/0210389] [INSPIRE].ADSGoogle Scholar - [20]E.A. Baltz and L. Bergstrom,
*Detection of leptonic dark matter*,*Phys. Rev.***D 67**(2003) 043516 [hep-ph/0211325] [INSPIRE].ADSGoogle Scholar - [21]T. Hambye, K. Kannike, E. Ma and M. Raidal,
*Emanations of dark matter: muon anomalous magnetic moment, radiative neutrino mass and novel leptogenesis at the TeV scale*,*Phys. Rev.***D 75**(2007) 095003 [hep-ph/0609228] [INSPIRE].ADSGoogle Scholar - [22]C.-R. Chen and F. Takahashi,
*Cosmic rays from leptonic dark matter*,*JCAP***02**(2009) 004 [arXiv:0810.4110] [INSPIRE].ADSGoogle Scholar - [23]P.J. Fox and E. Poppitz,
*Leptophilic dark matter*,*Phys. Rev.***D 79**(2009) 083528 [arXiv:0811.0399] [INSPIRE].ADSGoogle Scholar - [24]M. Cirelli, M. Kadastik, M. Raidal and A. Strumia,
*Model-independent implications of the e*^{±}*, anti-proton cosmic ray spectra on properties of dark matter*,*Nucl. Phys.***B 813**(2009) 1 [*Addendum ibid.***B 873**(2013) 530] [arXiv:0809.2409] [INSPIRE]. - [25]A. Ibarra, A. Ringwald, D. Tran and C. Weniger,
*Cosmic rays from leptophilic dark matter decay via kinetic mixing*,*JCAP***08**(2009) 017 [arXiv:0903.3625] [INSPIRE].ADSGoogle Scholar - [26]H. Davoudiasl,
*Dark matter with time-varying leptophilic couplings*,*Phys. Rev.***D 80**(2009) 043502 [arXiv:0904.3103] [INSPIRE].ADSGoogle Scholar - [27]J. Kopp, V. Niro, T. Schwetz and J. Zupan,
*DAMA/LIBRA and leptonically interacting dark matter*,*Phys. Rev.***D 80**(2009) 083502 [arXiv:0907.3159] [INSPIRE].ADSGoogle Scholar - [28]T. Cohen and K.M. Zurek,
*Leptophilic dark matter from the lepton asymmetry*,*Phys. Rev. Lett.***104**(2010) 101301 [arXiv:0909.2035] [INSPIRE].ADSGoogle Scholar - [29]D. Spolyar, M.R. Buckley, K. Freese, D. Hooper and H. Murayama,
*High energy neutrinos as a test of leptophilic dark matter*, arXiv:0905.4764 [INSPIRE]. - [30]H.-S. Goh, L.J. Hall and P. Kumar,
*The leptonic Higgs as a messenger of dark matter*,*JHEP***05**(2009) 097 [arXiv:0902.0814] [INSPIRE].ADSGoogle Scholar - [31]Q.-H. Cao, E. Ma and G. Shaughnessy,
*Dark matter: the leptonic connection*,*Phys. Lett.***B 673**(2009) 152 [arXiv:0901.1334] [INSPIRE].ADSGoogle Scholar - [32]P. Ko and Y. Omura,
*Supersymmetric*U(1)_{B}× U(1)_{L}*model with leptophilic and leptophobic cold dark matters*,*Phys. Lett.***B 701**(2011) 363 [arXiv:1012.4679] [INSPIRE].ADSGoogle Scholar - [33]W. Chao,
*Pure leptonic gauge symmetry, neutrino masses and dark matter*,*Phys. Lett.***B 695**(2011) 157 [arXiv:1005.1024] [INSPIRE].ADSGoogle Scholar - [34]W.-Z. Feng, P. Nath and G. Peim,
*Cosmic coincidence and asymmetric dark matter in a Stückelberg extension*,*Phys. Rev.***D 85**(2012) 115016 [arXiv:1204.5752] [INSPIRE].ADSGoogle Scholar - [35]D. Schmidt, T. Schwetz and T. Toma,
*Direct detection of leptophilic dark matter in a model with radiative neutrino masses*,*Phys. Rev.***D 85**(2012) 073009 [arXiv:1201.0906] [INSPIRE].ADSGoogle Scholar - [36]M. Das and S. Mohanty,
*Leptophilic dark matter in gauged L*_{μ}−*L*_{τ}*extension of MSSM*,*Phys. Rev.***D 89**(2014) 025004 [arXiv:1306.4505] [INSPIRE].ADSGoogle Scholar - [37]P. Agrawal, S. Blanchet, Z. Chacko and C. Kilic,
*Flavored dark matter and its implications for direct detection and colliders*,*Phys. Rev.***D 86**(2012) 055002 [arXiv:1109.3516] [INSPIRE].ADSGoogle Scholar - [38]A. Crivellin, F. D’Eramo and M. Procura,
*New constraints on dark matter effective theories from standard model loops*,*Phys. Rev. Lett.***112**(2014) 191304 [arXiv:1402.1173] [INSPIRE].ADSGoogle Scholar - [39]M. Papucci and A. Strumia,
*Robust implications on dark matter from the first FERMI sky gamma map*,*JCAP***03**(2010) 014 [arXiv:0912.0742] [INSPIRE].ADSGoogle Scholar - [40]K.N. Abazajian, P. Agrawal, Z. Chacko and C. Kilic,
*Conservative constraints on dark matter from the Fermi-LAT isotropic diffuse gamma-ray background spectrum*,*JCAP***11**(2010) 041 [arXiv:1002.3820] [INSPIRE].ADSGoogle Scholar - [41]G. Hutsi, A. Hektor and M. Raidal,
*Implications of the Fermi-LAT diffuse gamma-ray measurements on annihilating or decaying dark matter*,*JCAP***07**(2010) 008 [arXiv:1004.2036] [INSPIRE].ADSGoogle Scholar - [42]K.N. Abazajian, S. Blanchet and J.P. Harding,
*Current and future constraints on dark matter from prompt and inverse-Compton photon emission in the isotropic diffuse gamma-ray background*,*Phys. Rev.***D 85**(2012) 043509 [arXiv:1011.5090] [INSPIRE].ADSGoogle Scholar - [43]D. Hooper and T. Linden,
*On the origin of the gamma rays from the galactic center*,*Phys. Rev.***D 84**(2011) 123005 [arXiv:1110.0006] [INSPIRE].ADSGoogle Scholar - [44]S. Blanchet and J. Lavalle,
*Diffuse gamma-ray constraints on dark matter revisited. I: the impact of subhalos*,*JCAP***11**(2012) 021 [arXiv:1207.2476] [INSPIRE].ADSGoogle Scholar - [45]D. Hooper, C. Kelso and F.S. Queiroz,
*Stringent and robust constraints on the dark matter annihilation cross section from the region of the galactic center*,*Astropart. Phys.***46**(2013) 55 [arXiv:1209.3015] [INSPIRE].ADSGoogle Scholar - [46]M. Tavakoli, I. Cholis, C. Evoli and P. Ullio,
*Constraints on dark matter annihilations from diffuse gamma-ray emission in the galaxy*,*JCAP***01**(2014) 017 [arXiv:1308.4135] [INSPIRE].ADSGoogle Scholar - [47]I. Cholis, D. Hooper and S.D. McDermott,
*Dissecting the gamma-ray background in search of dark matter*,*JCAP***02**(2014) 014 [arXiv:1312.0608] [INSPIRE].ADSMathSciNetGoogle Scholar - [48]Fermi-LAT collaboration, M. Ackermann et al.,
*Dark matter constraints from observations of*25*milky way satellite galaxies with the Fermi Large Area Telescope*,*Phys. Rev.***D 89**(2014) 042001 [arXiv:1310.0828] [INSPIRE].ADSGoogle Scholar - [49]J. Goodman et al.,
*Gamma ray line constraints on effective theories of dark matter*,*Nucl. Phys.***B 844**(2011) 55 [arXiv:1009.0008] [INSPIRE].ADSGoogle Scholar - [50]K.N. Abazajian, P. Agrawal, Z. Chacko and C. Kilic,
*Lower limits on the strengths of gamma ray lines from WIMP dark matter annihilation*,*Phys. Rev.***D 85**(2012) 123543 [arXiv:1111.2835] [INSPIRE].ADSGoogle Scholar - [51]T. Bringmann, X. Huang, A. Ibarra, S. Vogl and C. Weniger,
*Fermi-LAT search for internal bremsstrahlung signatures from dark matter annihilation*,*JCAP***07**(2012) 054 [arXiv:1203.1312] [INSPIRE].ADSGoogle Scholar - [52]T. Bringmann and C. Weniger,
*Gamma ray signals from dark matter: concepts, status and prospects*,*Phys. Dark Univ.***1**(2012) 194 [arXiv:1208.5481] [INSPIRE].Google Scholar - [53]B. Shakya,
*A*130*GeV gamma ray signal from supersymmetry*,*Phys. Dark Univ.***2**(2013) 83 [arXiv:1209.2427] [INSPIRE].Google Scholar - [54]L. Bergstrom,
*The*130*GeV fingerprint of right-handed neutrino dark matter*,*Phys. Rev.***D 86**(2012) 103514 [arXiv:1208.6082] [INSPIRE].ADSGoogle Scholar - [55]M. Garny, A. Ibarra, M. Pato and S. Vogl,
*Internal bremsstrahlung signatures in light of direct dark matter searches*,*JCAP***12**(2013) 046 [arXiv:1306.6342] [INSPIRE].ADSGoogle Scholar - [56]T. Toma,
*Internal bremsstrahlung signature of real scalar dark matter and consistency with thermal relic density*,*Phys. Rev. Lett.***111**(2013) 091301 [arXiv:1307.6181] [INSPIRE].ADSGoogle Scholar - [57]F. Giacchino, L. Lopez-Honorez and M.H.G. Tytgat,
*Scalar dark matter models with significant internal bremsstrahlung*,*JCAP***10**(2013) 025 [arXiv:1307.6480] [INSPIRE].ADSGoogle Scholar - [58]J. Kopp, L. Michaels and J. Smirnov,
*Loopy constraints on leptophilic dark matter and internal bremsstrahlung*,*JCAP***04**(2014) 022 [arXiv:1401.6457] [INSPIRE].ADSGoogle Scholar - [59]B. Kyae,
*PAMELA/ATIC anomaly from the meta-stable extra dark matter component and the leptophilic Yukawa interaction*,*JCAP***07**(2009) 028 [arXiv:0902.0071] [INSPIRE].ADSGoogle Scholar - [60]X.-J. Bi, X.-G. He and Q. Yuan,
*Parameters in a class of leptophilic models from PAMELA, ATIC and FERMI*,*Phys. Lett.***B 678**(2009) 168 [arXiv:0903.0122] [INSPIRE].ADSGoogle Scholar - [61]N. Haba, Y. Kajiyama, S. Matsumoto, H. Okada and K. Yoshioka,
*Universally leptophilic dark matter from non-Abelian discrete symmetry*,*Phys. Lett.***B 695**(2011) 476 [arXiv:1008.4777] [INSPIRE].ADSGoogle Scholar - [62]C.D. Carone and R. Primulando,
*A Froggatt-Nielsen model for leptophilic scalar dark matter decay*,*Phys. Rev.***D 84**(2011) 035002 [arXiv:1105.4635] [INSPIRE].ADSGoogle Scholar - [63]L. Bergstrom, T. Bringmann, I. Cholis, D. Hooper and C. Weniger,
*New limits on dark matter annihilation from AMS cosmic ray positron data*,*Phys. Rev. Lett.***111**(2013) 171101 [arXiv:1306.3983] [INSPIRE].ADSGoogle Scholar - [64]A. Ibarra, A.S. Lamperstorfer and J. Silk,
*Dark matter annihilations and decays after the AMS-*02*positron measurements*,*Phys. Rev.***D 89**(2014) 063539 [arXiv:1309.2570] [INSPIRE].ADSGoogle Scholar - [65]K. Fukushima and J. Kumar,
*Dipole moment bounds on dark matter annihilation*,*Phys. Rev.***D 88**(2013) 056017 [arXiv:1307.7120] [INSPIRE].ADSGoogle Scholar - [66]T. Kinoshita and M. Nio,
*The tenth-order QED contribution to the lepton g*− 2*: evaluation of dominant α*^{5}*terms of muon g*− 2,*Phys. Rev.***D 73**(2006) 053007 [hep-ph/0512330] [INSPIRE].ADSGoogle Scholar - [67]A. Czarnecki, W.J. Marciano and A. Vainshtein,
*Refinements in electroweak contributions to the muon anomalous magnetic moment*,*Phys. Rev.***D 67**(2003) 073006 [*Erratum ibid.***D 73**(2006) 119901] [hep-ph/0212229] [INSPIRE]. - [68]K. Hagiwara, R. Liao, A.D. Martin, D. Nomura and T. Teubner, (
*g*− 2)_{μ}*and α*(*M*_{Z}^{2})*re-evaluated using new precise data*,*J. Phys.***G 38**(2011) 085003 [arXiv:1105.3149] [INSPIRE].ADSGoogle Scholar - [69]M. Davier and W.J. Marciano,
*The theoretical prediction for the muon anomalous magnetic moment*,*Ann. Rev. Nucl. Part. Sci.***54**(2004) 115 [INSPIRE].ADSGoogle Scholar - [70]M. Passera,
*The standard model prediction of the muon anomalous magnetic moment*,*J. Phys.***G 31**(2005) R75 [hep-ph/0411168] [INSPIRE].ADSGoogle Scholar - [71]Muon G-2 collaboration, G.W. Bennett et al.,
*Final report of the muon E*821*anomalous magnetic moment measurement at BNL*,*Phys. Rev.***D 73**(2006) 072003 [hep-ex/0602035] [INSPIRE].ADSGoogle Scholar - [72]M. Davier, S. Eidelman, A. Hocker and Z. Zhang,
*Updated estimate of the muon magnetic moment using revised results from e*^{+}*e*^{−}*annihilation*,*Eur. Phys. J.***C 31**(2003) 503 [hep-ph/0308213] [INSPIRE].ADSGoogle Scholar - [73]I.R. Blokland, A. Czarnecki and K. Melnikov,
*Pion pole contribution to hadronic light by light scattering and muon anomalous magnetic moment*,*Phys. Rev. Lett.***88**(2002) 071803 [hep-ph/0112117] [INSPIRE].ADSGoogle Scholar - [74]K. Melnikov and A. Vainshtein,
*Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment revisited*,*Phys. Rev.***D 70**(2004) 113006 [hep-ph/0312226] [INSPIRE].ADSGoogle Scholar - [75]J.F. de Troconiz and F.J. Yndurain,
*The hadronic contributions to the anomalous magnetic moment of the muon*,*Phys. Rev.***D 71**(2005) 073008 [hep-ph/0402285] [INSPIRE].ADSGoogle Scholar - [76]J. Bijnens and J. Prades,
*The hadronic light-by-light contribution to the muon anomalous magnetic moment: where do we stand?*,*Mod. Phys. Lett.***A 22**(2007) 767 [hep-ph/0702170] [INSPIRE].ADSGoogle Scholar - [77]M. Davier, A. Hoecker, B. Malaescu and Z. Zhang,
*Reevaluation of the hadronic contributions to the muon g*− 2*and to α*(*M*_{Z}^{2}),*Eur. Phys. J.***C 71**(2011) 1515 [*Erratum ibid.***C 72**(2012) 1874] [arXiv:1010.4180] [INSPIRE]. - [78]J.P. Miller, E.d. Rafael, B.L. Roberts and D. Stöckinger,
*Muon*(*g*− 2)*: experiment and theory*,*Ann. Rev. Nucl. Part. Sci.***62**(2012) 237 [INSPIRE].ADSGoogle Scholar - [79]F. Jegerlehner and A. Nyffeler,
*The muon g*− 2,*Phys. Rept.***477**(2009) 1 [arXiv:0902.3360] [INSPIRE].ADSGoogle Scholar - [80]D. Hanneke, S. Fogwell and G. Gabrielse,
*New measurement of the electron magnetic moment and the fine structure constant*,*Phys. Rev. Lett.***100**(2008) 120801 [arXiv:0801.1134] [INSPIRE].ADSGoogle Scholar - [81]J.P. Leveille,
*The second order weak correction to*(*g*− 2)*of the muon in arbitrary gauge models*,*Nucl. Phys.***B 137**(1978) 63 [INSPIRE].ADSGoogle Scholar - [82]S.R. Moore, K. Whisnant and B.-L. Young,
*Second order corrections to the muon anomalous magnetic moment in alternative electroweak models*,*Phys. Rev.***D 31**(1985) 105 [INSPIRE].ADSGoogle Scholar - [83]J.A. Grifols and A. Méndez,
*Constraints on supersymmetric particle masses from*(*g*− 2)_{μ},*Phys. Rev.***D 26**(1982) 1809 [INSPIRE].ADSGoogle Scholar - [84]LUX collaboration, D.S. Akerib et al.,
*First results from the LUX dark matter experiment at the Sanford Underground Research Facility*,*Phys. Rev. Lett.***112**(2014) 091303 [arXiv:1310.8214] [INSPIRE].ADSGoogle Scholar - [85]A. Kumar and S. Tulin,
*Top-flavored dark matter and the forward-backward asymmetry*,*Phys. Rev.***D 87**(2013) 095006 [arXiv:1303.0332] [INSPIRE].ADSGoogle Scholar - [86]Y. Zeldovich,
*Electromagnetic interaction with parity violation*,*Sov. Phys. JETP***6**(1958) 1184 [*Zh. Eksp. Teor. Fiz.***33**(1958) 1531].Google Scholar - [87]J.F. Nieves,
*Electromagnetic properties of Majorana neutrinos*,*Phys. Rev.***D 26**(1982) 3152 [INSPIRE].ADSGoogle Scholar - [88]B. Kayser,
*Majorana neutrinos and their electromagnetic properties*,*Phys. Rev.***D 26**(1982) 1662 [INSPIRE].ADSGoogle Scholar - [89]E.E. Radescu,
*Comments on the electromagnetic properties of Majorana fermions*,*Phys. Rev.***D 32**(1985) 1266 [INSPIRE].ADSGoogle Scholar - [90]F. Boudjema, C. Hamzaoui, V. Rahal and H.C. Ren,
*Electromagnetic properties of generalized Majorana particles*,*Phys. Rev. Lett.***62**(1989) 852 [INSPIRE].ADSMathSciNetGoogle Scholar - [91]F. Boudjema and C. Hamzaoui,
*Massive and massless Majorana particles of arbitrary spin: covariant gauge couplings and production properties*,*Phys. Rev.***D 43**(1991) 3748 [INSPIRE].ADSGoogle Scholar - [92]V. Barger, W.-Y. Keung and D. Marfatia,
*Electromagnetic properties of dark matter: dipole moments and charge form factor*,*Phys. Lett.***B 696**(2011) 74 [arXiv:1007.4345] [INSPIRE].ADSGoogle Scholar - [93]S. Chang, N. Weiner and I. Yavin,
*Magnetic inelastic dark matter*,*Phys. Rev.***D 82**(2010) 125011 [arXiv:1007.4200] [INSPIRE].ADSGoogle Scholar - [94]P.J. Fox, R. Harnik, J. Kopp and Y. Tsai,
*LEP shines light on dark matter*,*Phys. Rev.***D 84**(2011) 014028 [arXiv:1103.0240] [INSPIRE].ADSGoogle Scholar - [95]E. Eichten, K.D. Lane and M.E. Peskin,
*New tests for quark and lepton substructure*,*Phys. Rev. Lett.***50**(1983) 811 [INSPIRE].ADSGoogle Scholar - [96]H. Kroha,
*Compositeness limits from e*^{+}*e*^{−}*annihilation revisited*,*Phys. Rev.***D 46**(1992) 58 [INSPIRE].ADSGoogle Scholar - [97]ALEPH, DELPHI, L3, OPAL and LEP Electroweak collaborations, S. Schael et al.,
*Electroweak measurements in electron-positron collisions at W-boson-pair energies at LEP*,*Phys. Rept.***532**(2013) 119 [arXiv:1302.3415] [INSPIRE].ADSGoogle Scholar - [98]D. Bourilkov,
*Hint for axial vector contact interactions in the data on e*^{+}*e*^{−}→*e*^{+}*e*^{−}(γ)*at center-of-mass energies*192*-*208*GeV*,*Phys. Rev.***D 64**(2001) 071701 [hep-ph/0104165] [INSPIRE].ADSGoogle Scholar - [99]R. Essig et al.,
*Working group report: new light weakly coupled particles*, arXiv:1311.0029 [INSPIRE]. - [100]E.M. Riordan et al.,
*A search for short lived axions in an electron beam dump experiment*,*Phys. Rev. Lett.***59**(1987) 755 [INSPIRE].ADSGoogle Scholar - [101]J.D. Bjorken et al.,
*Search for neutral metastable penetrating particles produced in the SLAC beam dump*,*Phys. Rev.***D 38**(1988) 3375 [INSPIRE].ADSGoogle Scholar - [102]A. Bross et al.,
*A search for shortlived particles produced in an electron beam dump*,*Phys. Rev. Lett.***67**(1991) 2942 [INSPIRE].ADSGoogle Scholar - [103]J.D. Bjorken, R. Essig, P. Schuster and N. Toro,
*New fixed-target experiments to search for dark gauge forces*,*Phys. Rev.***D 80**(2009) 075018 [arXiv:0906.0580] [INSPIRE].ADSGoogle Scholar - [104]N. Borodatchenkova, D. Choudhury and M. Drees,
*Probing MeV dark matter at low-energy e*+*e*−*colliders*,*Phys. Rev. Lett.***96**(2006) 141802 [hep-ph/0510147] [INSPIRE].ADSGoogle Scholar - [105]P. Fayet,
*U -boson production in e*^{+}*e*^{−}*annihilations, ψ and*Υ*decays and light dark matter*,*Phys. Rev.***D 75**(2007) 115017 [hep-ph/0702176] [INSPIRE].ADSGoogle Scholar - [106]M. Reece and L.-T. Wang,
*Searching for the light dark gauge boson in GeV-scale experiments*,*JHEP***07**(2009) 051 [arXiv:0904.1743] [INSPIRE].ADSGoogle Scholar - [107]ATLAS collaboration,
*Search for direct-slepton and direct-chargino production in final states with two opposite-sign leptons, missing transverse momentum and no jets in*20 fb^{−1}*of pp collisions at*\( \sqrt{s} \) = 8*TeV with the ATLAS detector*, ATLAS-CONF-2013-049, CERN, Geneva Switzerland (2013). - [108]P. Agrawal, Z. Chacko, C. Kilic and R.K. Mishra,
*A classification of dark matter candidates with primarily spin-dependent interactions with matter*, arXiv:1003.1912 [INSPIRE]. - [109]J. Fan, M. Reece and L.-T. Wang,
*Non-relativistic effective theory of dark matter direct detection*,*JCAP***11**(2010) 042 [arXiv:1008.1591] [INSPIRE].ADSGoogle Scholar - [110]S. Chang, R. Edezhath, J. Hutchinson and M. Luty,
*Effective WIMPs*,*Phys. Rev.***D 89**(2014) 015011 [arXiv:1307.8120] [INSPIRE].ADSGoogle Scholar - [111]Y. Bai and J. Berger,
*Fermion portal dark matter*,*JHEP***11**(2013) 171 [arXiv:1308.0612] [INSPIRE].ADSGoogle Scholar - [112]A. DiFranzo, K.I. Nagao, A. Rajaraman and T.M.P. Tait,
*Simplified models for dark matter interacting with quarks*,*JHEP***11**(2013) 014 [arXiv:1308.2679] [INSPIRE].ADSGoogle Scholar - [113]
- [114]A. Freitas, J. Lykken, S. Kell and S. Westhoff,
*Testing the muon g*− 2*anomaly at the LHC*,*JHEP***05**(2014) 145 [arXiv:1402.7065] [INSPIRE].ADSGoogle Scholar

## Copyright information

**Open Access**This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.