Leptophilic dark matter and the anomalous magnetic moment of the muon

  • Prateek AgrawalEmail author
  • Zackaria Chacko
  • Christopher B. Verhaaren
Open Access


We consider renormalizable theories such that the scattering of dark matter off leptons arises at tree level, but scattering off nuclei only arises at loop. In this framework, the various dark matter candidates can be classified by their spins and by the forms of their interactions with leptons. We determine the corrections to the anomalous magnetic moment of the muon that arise from its interactions with dark matter. We then consider the implications of these results for a set of simplified models of leptophilic dark matter. When a dark matter candidate reduces the existing tension between the standard model prediction of the anomalous magnetic moment and the experimental measurement, the region of parameter space favored to completely remove the discrepancy is highlighted. Conversely, when agreement is worsened, we place limits on the parameters of the corresponding simplified model. These bounds and favored regions are compared against the experimental constraints on the simplified model from direct detection and from collider searches. Although these constraints are severe, we find there do exist limited regions of parameter space in these simple theories that can explain the observed anomaly in the muon magnetic moment while remaining consistent with all experimental bounds.


Phenomenological Models 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  4. [4]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. (2014) [arXiv:1303.5076] [INSPIRE].
  5. [5]
    B.W. Lee and S. Weinberg, Cosmological lower bound on heavy neutrino masses, Phys. Rev. Lett. 39 (1977) 165 [INSPIRE].ADSGoogle Scholar
  6. [6]
    M.I. Vysotsky, A.D. Dolgov and Y. Zeldovich, Cosmological restriction on neutral lepton masses, JETP Lett. 26 (1977) 188 [Pisma Zh. Eksp. Teor. Fiz. 26 (1977) 200] [INSPIRE].
  7. [7]
    S. Nussinov, Technocosmology: could a technibaryon excess provide anaturalmissing mass candidate?, Phys. Lett. B 165 (1985) 55 [INSPIRE].ADSGoogle Scholar
  8. [8]
    G.B. Gelmini, L.J. Hall and M.J. Lin, What is the cosmion?, Nucl. Phys. B 281 (1987) 726 [INSPIRE].ADSGoogle Scholar
  9. [9]
    D.N. Spergel and W.H. Press, Effect of hypothetical, weakly interacting, massive particles on energy transport in the solar interior, Astrophys. J. 294 (1985) 663 [INSPIRE].ADSGoogle Scholar
  10. [10]
    S.M. Barr, R.S. Chivukula and E. Farhi, Electroweak fermion number violation and the production of stable particles in the early universe, Phys. Lett. B 241 (1990) 387 [INSPIRE].ADSGoogle Scholar
  11. [11]
    S.M. Barr, Baryogenesis, sphalerons and the cogeneration of dark matter, Phys. Rev. D 44 (1991) 3062 [INSPIRE].ADSGoogle Scholar
  12. [12]
    D.B. Kaplan, A single explanation for both the baryon and dark matter densities, Phys. Rev. Lett. 68 (1992) 741 [INSPIRE].ADSGoogle Scholar
  13. [13]
    S.B. Gudnason, C. Kouvaris and F. Sannino, Towards working technicolor: effective theories and dark matter, Phys. Rev. D 73 (2006) 115003 [hep-ph/0603014] [INSPIRE].ADSGoogle Scholar
  14. [14]
    S.B. Gudnason, C. Kouvaris and F. Sannino, Dark matter from new technicolor theories, Phys. Rev. D 74 (2006) 095008 [hep-ph/0608055] [INSPIRE].ADSGoogle Scholar
  15. [15]
    R. Kitano and I. Low, Dark matter from baryon asymmetry, Phys. Rev. D 71 (2005) 023510 [hep-ph/0411133] [INSPIRE].ADSGoogle Scholar
  16. [16]
    R. Kitano and I. Low, Grand unification, dark matter, baryon asymmetry and the small scale structure of the universe, hep-ph/0503112 [INSPIRE].
  17. [17]
    D.E. Kaplan, M.A. Luty and K.M. Zurek, Asymmetric dark matter, Phys. Rev. D 79 (2009) 115016 [arXiv:0901.4117] [INSPIRE].ADSGoogle Scholar
  18. [18]
    K.M. Zurek, Asymmetric dark matter: theories, signatures and constraints, Phys. Rept. 537 (2014) 91 [arXiv:1308.0338] [INSPIRE].ADSGoogle Scholar
  19. [19]
    L.M. Krauss, S. Nasri and M. Trodden, A model for neutrino masses and dark matter, Phys. Rev. D 67 (2003) 085002 [hep-ph/0210389] [INSPIRE].ADSGoogle Scholar
  20. [20]
    E.A. Baltz and L. Bergstrom, Detection of leptonic dark matter, Phys. Rev. D 67 (2003) 043516 [hep-ph/0211325] [INSPIRE].ADSGoogle Scholar
  21. [21]
    T. Hambye, K. Kannike, E. Ma and M. Raidal, Emanations of dark matter: muon anomalous magnetic moment, radiative neutrino mass and novel leptogenesis at the TeV scale, Phys. Rev. D 75 (2007) 095003 [hep-ph/0609228] [INSPIRE].ADSGoogle Scholar
  22. [22]
    C.-R. Chen and F. Takahashi, Cosmic rays from leptonic dark matter, JCAP 02 (2009) 004 [arXiv:0810.4110] [INSPIRE].ADSGoogle Scholar
  23. [23]
    P.J. Fox and E. Poppitz, Leptophilic dark matter, Phys. Rev. D 79 (2009) 083528 [arXiv:0811.0399] [INSPIRE].ADSGoogle Scholar
  24. [24]
    M. Cirelli, M. Kadastik, M. Raidal and A. Strumia, Model-independent implications of the e ± , anti-proton cosmic ray spectra on properties of dark matter, Nucl. Phys. B 813 (2009) 1 [Addendum ibid. B 873 (2013) 530] [arXiv:0809.2409] [INSPIRE].
  25. [25]
    A. Ibarra, A. Ringwald, D. Tran and C. Weniger, Cosmic rays from leptophilic dark matter decay via kinetic mixing, JCAP 08 (2009) 017 [arXiv:0903.3625] [INSPIRE].ADSGoogle Scholar
  26. [26]
    H. Davoudiasl, Dark matter with time-varying leptophilic couplings, Phys. Rev. D 80 (2009) 043502 [arXiv:0904.3103] [INSPIRE].ADSGoogle Scholar
  27. [27]
    J. Kopp, V. Niro, T. Schwetz and J. Zupan, DAMA/LIBRA and leptonically interacting dark matter, Phys. Rev. D 80 (2009) 083502 [arXiv:0907.3159] [INSPIRE].ADSGoogle Scholar
  28. [28]
    T. Cohen and K.M. Zurek, Leptophilic dark matter from the lepton asymmetry, Phys. Rev. Lett. 104 (2010) 101301 [arXiv:0909.2035] [INSPIRE].ADSGoogle Scholar
  29. [29]
    D. Spolyar, M.R. Buckley, K. Freese, D. Hooper and H. Murayama, High energy neutrinos as a test of leptophilic dark matter, arXiv:0905.4764 [INSPIRE].
  30. [30]
    H.-S. Goh, L.J. Hall and P. Kumar, The leptonic Higgs as a messenger of dark matter, JHEP 05 (2009) 097 [arXiv:0902.0814] [INSPIRE].ADSGoogle Scholar
  31. [31]
    Q.-H. Cao, E. Ma and G. Shaughnessy, Dark matter: the leptonic connection, Phys. Lett. B 673 (2009) 152 [arXiv:0901.1334] [INSPIRE].ADSGoogle Scholar
  32. [32]
    P. Ko and Y. Omura, Supersymmetric U(1)B × U(1)L model with leptophilic and leptophobic cold dark matters, Phys. Lett. B 701 (2011) 363 [arXiv:1012.4679] [INSPIRE].ADSGoogle Scholar
  33. [33]
    W. Chao, Pure leptonic gauge symmetry, neutrino masses and dark matter, Phys. Lett. B 695 (2011) 157 [arXiv:1005.1024] [INSPIRE].ADSGoogle Scholar
  34. [34]
    W.-Z. Feng, P. Nath and G. Peim, Cosmic coincidence and asymmetric dark matter in a Stückelberg extension, Phys. Rev. D 85 (2012) 115016 [arXiv:1204.5752] [INSPIRE].ADSGoogle Scholar
  35. [35]
    D. Schmidt, T. Schwetz and T. Toma, Direct detection of leptophilic dark matter in a model with radiative neutrino masses, Phys. Rev. D 85 (2012) 073009 [arXiv:1201.0906] [INSPIRE].ADSGoogle Scholar
  36. [36]
    M. Das and S. Mohanty, Leptophilic dark matter in gauged L μL τ extension of MSSM, Phys. Rev. D 89 (2014) 025004 [arXiv:1306.4505] [INSPIRE].ADSGoogle Scholar
  37. [37]
    P. Agrawal, S. Blanchet, Z. Chacko and C. Kilic, Flavored dark matter and its implications for direct detection and colliders, Phys. Rev. D 86 (2012) 055002 [arXiv:1109.3516] [INSPIRE].ADSGoogle Scholar
  38. [38]
    A. Crivellin, F. D’Eramo and M. Procura, New constraints on dark matter effective theories from standard model loops, Phys. Rev. Lett. 112 (2014) 191304 [arXiv:1402.1173] [INSPIRE].ADSGoogle Scholar
  39. [39]
    M. Papucci and A. Strumia, Robust implications on dark matter from the first FERMI sky gamma map, JCAP 03 (2010) 014 [arXiv:0912.0742] [INSPIRE].ADSGoogle Scholar
  40. [40]
    K.N. Abazajian, P. Agrawal, Z. Chacko and C. Kilic, Conservative constraints on dark matter from the Fermi-LAT isotropic diffuse gamma-ray background spectrum, JCAP 11 (2010) 041 [arXiv:1002.3820] [INSPIRE].ADSGoogle Scholar
  41. [41]
    G. Hutsi, A. Hektor and M. Raidal, Implications of the Fermi-LAT diffuse gamma-ray measurements on annihilating or decaying dark matter, JCAP 07 (2010) 008 [arXiv:1004.2036] [INSPIRE].ADSGoogle Scholar
  42. [42]
    K.N. Abazajian, S. Blanchet and J.P. Harding, Current and future constraints on dark matter from prompt and inverse-Compton photon emission in the isotropic diffuse gamma-ray background, Phys. Rev. D 85 (2012) 043509 [arXiv:1011.5090] [INSPIRE].ADSGoogle Scholar
  43. [43]
    D. Hooper and T. Linden, On the origin of the gamma rays from the galactic center, Phys. Rev. D 84 (2011) 123005 [arXiv:1110.0006] [INSPIRE].ADSGoogle Scholar
  44. [44]
    S. Blanchet and J. Lavalle, Diffuse gamma-ray constraints on dark matter revisited. I: the impact of subhalos, JCAP 11 (2012) 021 [arXiv:1207.2476] [INSPIRE].ADSGoogle Scholar
  45. [45]
    D. Hooper, C. Kelso and F.S. Queiroz, Stringent and robust constraints on the dark matter annihilation cross section from the region of the galactic center, Astropart. Phys. 46 (2013) 55 [arXiv:1209.3015] [INSPIRE].ADSGoogle Scholar
  46. [46]
    M. Tavakoli, I. Cholis, C. Evoli and P. Ullio, Constraints on dark matter annihilations from diffuse gamma-ray emission in the galaxy, JCAP 01 (2014) 017 [arXiv:1308.4135] [INSPIRE].ADSGoogle Scholar
  47. [47]
    I. Cholis, D. Hooper and S.D. McDermott, Dissecting the gamma-ray background in search of dark matter, JCAP 02 (2014) 014 [arXiv:1312.0608] [INSPIRE].ADSMathSciNetGoogle Scholar
  48. [48]
    Fermi-LAT collaboration, M. Ackermann et al., Dark matter constraints from observations of 25 milky way satellite galaxies with the Fermi Large Area Telescope, Phys. Rev. D 89 (2014) 042001 [arXiv:1310.0828] [INSPIRE].ADSGoogle Scholar
  49. [49]
    J. Goodman et al., Gamma ray line constraints on effective theories of dark matter, Nucl. Phys. B 844 (2011) 55 [arXiv:1009.0008] [INSPIRE].ADSGoogle Scholar
  50. [50]
    K.N. Abazajian, P. Agrawal, Z. Chacko and C. Kilic, Lower limits on the strengths of gamma ray lines from WIMP dark matter annihilation, Phys. Rev. D 85 (2012) 123543 [arXiv:1111.2835] [INSPIRE].ADSGoogle Scholar
  51. [51]
    T. Bringmann, X. Huang, A. Ibarra, S. Vogl and C. Weniger, Fermi-LAT search for internal bremsstrahlung signatures from dark matter annihilation, JCAP 07 (2012) 054 [arXiv:1203.1312] [INSPIRE].ADSGoogle Scholar
  52. [52]
    T. Bringmann and C. Weniger, Gamma ray signals from dark matter: concepts, status and prospects, Phys. Dark Univ. 1 (2012) 194 [arXiv:1208.5481] [INSPIRE].Google Scholar
  53. [53]
    B. Shakya, A 130 GeV gamma ray signal from supersymmetry, Phys. Dark Univ. 2 (2013) 83 [arXiv:1209.2427] [INSPIRE].Google Scholar
  54. [54]
    L. Bergstrom, The 130 GeV fingerprint of right-handed neutrino dark matter, Phys. Rev. D 86 (2012) 103514 [arXiv:1208.6082] [INSPIRE].ADSGoogle Scholar
  55. [55]
    M. Garny, A. Ibarra, M. Pato and S. Vogl, Internal bremsstrahlung signatures in light of direct dark matter searches, JCAP 12 (2013) 046 [arXiv:1306.6342] [INSPIRE].ADSGoogle Scholar
  56. [56]
    T. Toma, Internal bremsstrahlung signature of real scalar dark matter and consistency with thermal relic density, Phys. Rev. Lett. 111 (2013) 091301 [arXiv:1307.6181] [INSPIRE].ADSGoogle Scholar
  57. [57]
    F. Giacchino, L. Lopez-Honorez and M.H.G. Tytgat, Scalar dark matter models with significant internal bremsstrahlung, JCAP 10 (2013) 025 [arXiv:1307.6480] [INSPIRE].ADSGoogle Scholar
  58. [58]
    J. Kopp, L. Michaels and J. Smirnov, Loopy constraints on leptophilic dark matter and internal bremsstrahlung, JCAP 04 (2014) 022 [arXiv:1401.6457] [INSPIRE].ADSGoogle Scholar
  59. [59]
    B. Kyae, PAMELA/ATIC anomaly from the meta-stable extra dark matter component and the leptophilic Yukawa interaction, JCAP 07 (2009) 028 [arXiv:0902.0071] [INSPIRE].ADSGoogle Scholar
  60. [60]
    X.-J. Bi, X.-G. He and Q. Yuan, Parameters in a class of leptophilic models from PAMELA, ATIC and FERMI, Phys. Lett. B 678 (2009) 168 [arXiv:0903.0122] [INSPIRE].ADSGoogle Scholar
  61. [61]
    N. Haba, Y. Kajiyama, S. Matsumoto, H. Okada and K. Yoshioka, Universally leptophilic dark matter from non-Abelian discrete symmetry, Phys. Lett. B 695 (2011) 476 [arXiv:1008.4777] [INSPIRE].ADSGoogle Scholar
  62. [62]
    C.D. Carone and R. Primulando, A Froggatt-Nielsen model for leptophilic scalar dark matter decay, Phys. Rev. D 84 (2011) 035002 [arXiv:1105.4635] [INSPIRE].ADSGoogle Scholar
  63. [63]
    L. Bergstrom, T. Bringmann, I. Cholis, D. Hooper and C. Weniger, New limits on dark matter annihilation from AMS cosmic ray positron data, Phys. Rev. Lett. 111 (2013) 171101 [arXiv:1306.3983] [INSPIRE].ADSGoogle Scholar
  64. [64]
    A. Ibarra, A.S. Lamperstorfer and J. Silk, Dark matter annihilations and decays after the AMS-02 positron measurements, Phys. Rev. D 89 (2014) 063539 [arXiv:1309.2570] [INSPIRE].ADSGoogle Scholar
  65. [65]
    K. Fukushima and J. Kumar, Dipole moment bounds on dark matter annihilation, Phys. Rev. D 88 (2013) 056017 [arXiv:1307.7120] [INSPIRE].ADSGoogle Scholar
  66. [66]
    T. Kinoshita and M. Nio, The tenth-order QED contribution to the lepton g − 2: evaluation of dominant α 5 terms of muon g − 2, Phys. Rev. D 73 (2006) 053007 [hep-ph/0512330] [INSPIRE].ADSGoogle Scholar
  67. [67]
    A. Czarnecki, W.J. Marciano and A. Vainshtein, Refinements in electroweak contributions to the muon anomalous magnetic moment, Phys. Rev. D 67 (2003) 073006 [Erratum ibid. D 73 (2006) 119901] [hep-ph/0212229] [INSPIRE].
  68. [68]
    K. Hagiwara, R. Liao, A.D. Martin, D. Nomura and T. Teubner, (g − 2)μ and α(M Z2) re-evaluated using new precise data, J. Phys. G 38 (2011) 085003 [arXiv:1105.3149] [INSPIRE].ADSGoogle Scholar
  69. [69]
    M. Davier and W.J. Marciano, The theoretical prediction for the muon anomalous magnetic moment, Ann. Rev. Nucl. Part. Sci. 54 (2004) 115 [INSPIRE].ADSGoogle Scholar
  70. [70]
    M. Passera, The standard model prediction of the muon anomalous magnetic moment, J. Phys. G 31 (2005) R75 [hep-ph/0411168] [INSPIRE].ADSGoogle Scholar
  71. [71]
    Muon G-2 collaboration, G.W. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].ADSGoogle Scholar
  72. [72]
    M. Davier, S. Eidelman, A. Hocker and Z. Zhang, Updated estimate of the muon magnetic moment using revised results from e + e annihilation, Eur. Phys. J. C 31 (2003) 503 [hep-ph/0308213] [INSPIRE].ADSGoogle Scholar
  73. [73]
    I.R. Blokland, A. Czarnecki and K. Melnikov, Pion pole contribution to hadronic light by light scattering and muon anomalous magnetic moment, Phys. Rev. Lett. 88 (2002) 071803 [hep-ph/0112117] [INSPIRE].ADSGoogle Scholar
  74. [74]
    K. Melnikov and A. Vainshtein, Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment revisited, Phys. Rev. D 70 (2004) 113006 [hep-ph/0312226] [INSPIRE].ADSGoogle Scholar
  75. [75]
    J.F. de Troconiz and F.J. Yndurain, The hadronic contributions to the anomalous magnetic moment of the muon, Phys. Rev. D 71 (2005) 073008 [hep-ph/0402285] [INSPIRE].ADSGoogle Scholar
  76. [76]
    J. Bijnens and J. Prades, The hadronic light-by-light contribution to the muon anomalous magnetic moment: where do we stand?, Mod. Phys. Lett. A 22 (2007) 767 [hep-ph/0702170] [INSPIRE].ADSGoogle Scholar
  77. [77]
    M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic contributions to the muon g − 2 and to α(M Z2), Eur. Phys. J. C 71 (2011) 1515 [Erratum ibid. C 72 (2012) 1874] [arXiv:1010.4180] [INSPIRE].
  78. [78]
    J.P. Miller, E.d. Rafael, B.L. Roberts and D. Stöckinger, Muon (g − 2): experiment and theory, Ann. Rev. Nucl. Part. Sci. 62 (2012) 237 [INSPIRE].ADSGoogle Scholar
  79. [79]
    F. Jegerlehner and A. Nyffeler, The muon g − 2, Phys. Rept. 477 (2009) 1 [arXiv:0902.3360] [INSPIRE].ADSGoogle Scholar
  80. [80]
    D. Hanneke, S. Fogwell and G. Gabrielse, New measurement of the electron magnetic moment and the fine structure constant, Phys. Rev. Lett. 100 (2008) 120801 [arXiv:0801.1134] [INSPIRE].ADSGoogle Scholar
  81. [81]
    J.P. Leveille, The second order weak correction to (g − 2) of the muon in arbitrary gauge models, Nucl. Phys. B 137 (1978) 63 [INSPIRE].ADSGoogle Scholar
  82. [82]
    S.R. Moore, K. Whisnant and B.-L. Young, Second order corrections to the muon anomalous magnetic moment in alternative electroweak models, Phys. Rev. D 31 (1985) 105 [INSPIRE].ADSGoogle Scholar
  83. [83]
    J.A. Grifols and A. Méndez, Constraints on supersymmetric particle masses from (g − 2)μ, Phys. Rev. D 26 (1982) 1809 [INSPIRE].ADSGoogle Scholar
  84. [84]
    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].ADSGoogle Scholar
  85. [85]
    A. Kumar and S. Tulin, Top-flavored dark matter and the forward-backward asymmetry, Phys. Rev. D 87 (2013) 095006 [arXiv:1303.0332] [INSPIRE].ADSGoogle Scholar
  86. [86]
    Y. Zeldovich, Electromagnetic interaction with parity violation, Sov. Phys. JETP 6 (1958) 1184 [Zh. Eksp. Teor. Fiz. 33 (1958) 1531].Google Scholar
  87. [87]
    J.F. Nieves, Electromagnetic properties of Majorana neutrinos, Phys. Rev. D 26 (1982) 3152 [INSPIRE].ADSGoogle Scholar
  88. [88]
    B. Kayser, Majorana neutrinos and their electromagnetic properties, Phys. Rev. D 26 (1982) 1662 [INSPIRE].ADSGoogle Scholar
  89. [89]
    E.E. Radescu, Comments on the electromagnetic properties of Majorana fermions, Phys. Rev. D 32 (1985) 1266 [INSPIRE].ADSGoogle Scholar
  90. [90]
    F. Boudjema, C. Hamzaoui, V. Rahal and H.C. Ren, Electromagnetic properties of generalized Majorana particles, Phys. Rev. Lett. 62 (1989) 852 [INSPIRE].ADSMathSciNetGoogle Scholar
  91. [91]
    F. Boudjema and C. Hamzaoui, Massive and massless Majorana particles of arbitrary spin: covariant gauge couplings and production properties, Phys. Rev. D 43 (1991) 3748 [INSPIRE].ADSGoogle Scholar
  92. [92]
    V. Barger, W.-Y. Keung and D. Marfatia, Electromagnetic properties of dark matter: dipole moments and charge form factor, Phys. Lett. B 696 (2011) 74 [arXiv:1007.4345] [INSPIRE].ADSGoogle Scholar
  93. [93]
    S. Chang, N. Weiner and I. Yavin, Magnetic inelastic dark matter, Phys. Rev. D 82 (2010) 125011 [arXiv:1007.4200] [INSPIRE].ADSGoogle Scholar
  94. [94]
    P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, LEP shines light on dark matter, Phys. Rev. D 84 (2011) 014028 [arXiv:1103.0240] [INSPIRE].ADSGoogle Scholar
  95. [95]
    E. Eichten, K.D. Lane and M.E. Peskin, New tests for quark and lepton substructure, Phys. Rev. Lett. 50 (1983) 811 [INSPIRE].ADSGoogle Scholar
  96. [96]
    H. Kroha, Compositeness limits from e + e annihilation revisited, Phys. Rev. D 46 (1992) 58 [INSPIRE].ADSGoogle Scholar
  97. [97]
    ALEPH, DELPHI, L3, OPAL and LEP Electroweak collaborations, S. Schael et al., Electroweak measurements in electron-positron collisions at W-boson-pair energies at LEP, Phys. Rept. 532 (2013) 119 [arXiv:1302.3415] [INSPIRE].ADSGoogle Scholar
  98. [98]
    D. Bourilkov, Hint for axial vector contact interactions in the data on e + e e + e (γ) at center-of-mass energies 192-208 GeV, Phys. Rev. D 64 (2001) 071701 [hep-ph/0104165] [INSPIRE].ADSGoogle Scholar
  99. [99]
    R. Essig et al., Working group report: new light weakly coupled particles, arXiv:1311.0029 [INSPIRE].
  100. [100]
    E.M. Riordan et al., A search for short lived axions in an electron beam dump experiment, Phys. Rev. Lett. 59 (1987) 755 [INSPIRE].ADSGoogle Scholar
  101. [101]
    J.D. Bjorken et al., Search for neutral metastable penetrating particles produced in the SLAC beam dump, Phys. Rev. D 38 (1988) 3375 [INSPIRE].ADSGoogle Scholar
  102. [102]
    A. Bross et al., A search for shortlived particles produced in an electron beam dump, Phys. Rev. Lett. 67 (1991) 2942 [INSPIRE].ADSGoogle Scholar
  103. [103]
    J.D. Bjorken, R. Essig, P. Schuster and N. Toro, New fixed-target experiments to search for dark gauge forces, Phys. Rev. D 80 (2009) 075018 [arXiv:0906.0580] [INSPIRE].ADSGoogle Scholar
  104. [104]
    N. Borodatchenkova, D. Choudhury and M. Drees, Probing MeV dark matter at low-energy e+ecolliders, Phys. Rev. Lett. 96 (2006) 141802 [hep-ph/0510147] [INSPIRE].ADSGoogle Scholar
  105. [105]
    P. Fayet, U -boson production in e + e annihilations, ψ and Υ decays and light dark matter, Phys. Rev. D 75 (2007) 115017 [hep-ph/0702176] [INSPIRE].ADSGoogle Scholar
  106. [106]
    M. Reece and L.-T. Wang, Searching for the light dark gauge boson in GeV-scale experiments, JHEP 07 (2009) 051 [arXiv:0904.1743] [INSPIRE].ADSGoogle Scholar
  107. [107]
    ATLAS collaboration, Search for direct-slepton and direct-chargino production in final states with two opposite-sign leptons, missing transverse momentum and no jets in 20 fb−1 of pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2013-049, CERN, Geneva Switzerland (2013).
  108. [108]
    P. Agrawal, Z. Chacko, C. Kilic and R.K. Mishra, A classification of dark matter candidates with primarily spin-dependent interactions with matter, arXiv:1003.1912 [INSPIRE].
  109. [109]
    J. Fan, M. Reece and L.-T. Wang, Non-relativistic effective theory of dark matter direct detection, JCAP 11 (2010) 042 [arXiv:1008.1591] [INSPIRE].ADSGoogle Scholar
  110. [110]
    S. Chang, R. Edezhath, J. Hutchinson and M. Luty, Effective WIMPs, Phys. Rev. D 89 (2014) 015011 [arXiv:1307.8120] [INSPIRE].ADSGoogle Scholar
  111. [111]
    Y. Bai and J. Berger, Fermion portal dark matter, JHEP 11 (2013) 171 [arXiv:1308.0612] [INSPIRE].ADSGoogle Scholar
  112. [112]
    A. DiFranzo, K.I. Nagao, A. Rajaraman and T.M.P. Tait, Simplified models for dark matter interacting with quarks, JHEP 11 (2013) 014 [arXiv:1308.2679] [INSPIRE].ADSGoogle Scholar
  113. [113]
    Y. Bai and J. Berger, Lepton portal dark matter, arXiv:1402.6696 [INSPIRE].
  114. [114]
    A. Freitas, J. Lykken, S. Kell and S. Westhoff, Testing the muon g − 2 anomaly at the LHC, JHEP 05 (2014) 145 [arXiv:1402.7065] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2014

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Prateek Agrawal
    • 1
    Email author
  • Zackaria Chacko
    • 2
  • Christopher B. Verhaaren
    • 2
  1. 1.FermilabBataviaU.S.A.
  2. 2.Maryland Center for Fundamental Physics, Department of PhysicsUniversity of Maryland, Physical Sciences ComplexCollege ParkU.S.A.

Personalised recommendations