Advertisement

Universality of long-distance AdS physics from the CFT bootstrap

  • A. Liam Fitzpatrick
  • Jared Kaplan
  • Matthew T. WaltersEmail author
Open Access
Article

Abstract

We begin by explicating a recent proof of the cluster decomposition principle in AdS≥4 from the CFT≥3 bootstrap. The CFT argument also computes the leading interactions between distant objects in AdS≥4, and we confirm the universal agreement between the CFT bootstrap and AdS gravity in the semi-classical limit.

We proceed to study the generalization to CFT2, which requires knowledge of the Virasoro conformal blocks in a lightcone OPE limit. We compute these blocks in a semiclassical, large central charge approximation, and use them to prove a suitably modified theorem. In particular, from the d = 2 bootstrap we prove the existence of large spin operators with fixed ‘anomalous dimensions’ indicative of the presence of deficit angles in AdS3. As we approach the threshold for the BTZ black hole, interpreted as a CFT2 scaling dimension, the twist spectrum of large spin operators becomes dense.

Due to the exchange of the Virasoro identity block, primary states above the BTZ threshold mimic a thermal background for light operators. We derive the BTZ quasinormal modes, and we use the bootstrap equation to prove that the twist spectrum is dense. Corrections to thermality could be obtained from a more refined computation of the Virasoro conformal blocks.

Keywords

AdS-CFT Correspondence Black Holes 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Ferrara, A.F. Grillo and R. Gatto, Tensor representations of conformal algebra and conformally covariant operator product expansion, Annals Phys. 76 (1973) 161 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  2. [2]
    A.M. Polyakov, Non-Hamiltonian approach to the quantum field theory at small distances, Zh. Eksp. Teor. Fiz. (1973) [INSPIRE].
  3. [3]
    R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    C.G. Callan Jr. and D.J. Gross, Bjorken scaling in quantum field theory, Phys. Rev. D 8 (1973) 4383 [INSPIRE].ADSGoogle Scholar
  5. [5]
    L.F. Alday and J.M. Maldacena, Comments on operators with large spin, JHEP 11 (2007) 019 [arXiv:0708.0672] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    Z. Komargodski and A. Zhiboedov, Convexity and liberation at large spin, JHEP 11 (2013) 140 [arXiv:1212.4103] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The analytic bootstrap and AdS superhorizon locality, JHEP 12 (2013) 004 [arXiv:1212.3616] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  9. [9]
    I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from conformal field theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Local bulk operators in AdS/CFT: a boundary view of horizons and locality, Phys. Rev. D 73 (2006) 086003 [hep-th/0506118] [INSPIRE].ADSMathSciNetGoogle Scholar
  11. [11]
    A.L. Fitzpatrick, E. Katz, D. Poland and D. Simmons-Duffin, Effective conformal theory and the flat-space limit of AdS, JHEP 07 (2011) 023 [arXiv:1007.2412] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    S. El-Showk and K. Papadodimas, Emergent spacetime and holographic CFTs, JHEP 10 (2012) 106 [arXiv:1101.4163] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    K. Papadodimas and S. Raju, An infalling observer in AdS/CFT, JHEP 10 (2013) 212 [arXiv:1211.6767] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A.L. Fitzpatrick and J. Kaplan, AdS field theory from conformal field theory, JHEP 02 (2013) 054 [arXiv:1208.0337] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    A.V. Belitsky, A.S. Gorsky and G.P. Korchemsky, Gauge/string duality for QCD conformal operators, Nucl. Phys. B 667 (2003) 3 [hep-th/0304028] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    G.P. Korchemsky and G. Marchesini, Structure function for large x and renormalization of Wilson loop, Nucl. Phys. B 406 (1993) 225 [hep-ph/9210281] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    J.L. Cardy, Conformal invariance and universality in finite-size scaling, J. Phys. A 17 (1984) L385 [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    J.L. Cardy, Operator content of two-dimensional conformally invariant theories, Nucl. Phys. B 270 (1986) 186 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    J.M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43 (1991) 2046.ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50 (1994) 888 [cond-mat/9403051].ADSGoogle Scholar
  22. [22]
    A.L. Fitzpatrick and J. Kaplan, Unitarity and the holographic S-matrix, JHEP 10 (2012) 032 [arXiv:1112.4845] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a higher spin symmetry, J. Phys. A 46 (2013) 214011 [arXiv:1112.1016] [INSPIRE].ADSMathSciNetGoogle Scholar
  24. [24]
    D. Birmingham, I. Sachs and S.N. Solodukhin, Conformal field theory interpretation of black hole quasinormal modes, Phys. Rev. Lett. 88 (2002) 151301 [hep-th/0112055] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].CrossRefzbMATHMathSciNetGoogle Scholar
  26. [26]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  27. [27]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSzbMATHMathSciNetGoogle Scholar
  28. [28]
    J. Polchinski, String theory. Vol. 1: an introduction to the bosonic string, Cambridge University Press, Cambridge U.K. (2005).Google Scholar
  29. [29]
    P. Breitenlohner and D.Z. Freedman, Positive energy in anti-de Sitter backgrounds and gauged extended supergravity, Phys. Lett. B 115 (1982) 197 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  30. [30]
    J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, JHEP 03 (2011) 025 [arXiv:1011.1485] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    L. Cornalba, M.S. Costa and J. Penedones, Eikonal approximation in AdS/CFT: resumming the gravitational loop expansion, JHEP 09 (2007) 037 [arXiv:0707.0120] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  32. [32]
    L. Cornalba, M.S. Costa, J. Penedones and R. Schiappa, Eikonal approximation in AdS/CFT: conformal partial waves and finite N four-point functions, Nucl. Phys. B 767 (2007)327 [hep-th/0611123] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    L. Cornalba, M.S. Costa, J. Penedones and R. Schiappa, Eikonal approximation in AdS/CFT: from shock waves to four-point functions, JHEP 08 (2007) 019 [hep-th/0611122] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  34. [34]
    S.W. Hawking and D.N. Page, Thermodynamics of black holes in anti-de Sitter space, Commun. Math. Phys. 87 (1983) 577 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  35. [35]
    A.L. Fitzpatrick and D. Shih, Anomalous dimensions of non-chiral operators from AdS/CFT, JHEP 10 (2011) 113 [arXiv:1104.5013] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  36. [36]
    S. Deser, R. Jackiw and G. ’t Hooft, Three-dimensional Einstein gravity: dynamics of flat space, Annals Phys. 152 (1984) 220 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  37. [37]
    S. Deser and R. Jackiw, Three-dimensional cosmological gravity: dynamics of constant curvature, Annals Phys. 153 (1984) 405 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  38. [38]
    J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  39. [39]
    N. Cruz, C. Martinez and L. Pena, Geodesic structure of the (2 + 1) black hole, Class. Quant. Grav. 11 (1994) 2731 [gr-qc/9401025] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  40. [40]
    Z. Komargodski and A. Zhiboedov, Convexity and liberation at large spin, JHEP 11 (2013) 140 [arXiv:1212.4103] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    L.F. Alday and A. Bissi, Higher-spin correlators, JHEP 10 (2013) 202 [arXiv:1305.4604] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  42. [42]
    L.F. Alday and A. Bissi, The superconformal bootstrap for structure constants, arXiv:1310.3757 [INSPIRE].
  43. [43]
    C. Beem et al., Infinite chiral symmetry in four dimensions, arXiv:1312.5344 [INSPIRE].
  44. [44]
    V.S. Rychkov and A. Vichi, Universal constraints on conformal operator dimensions, Phys. Rev. D 80 (2009) 045006 [arXiv:0905.2211] [INSPIRE].ADSMathSciNetGoogle Scholar
  45. [45]
    F. Caracciolo and V.S. Rychkov, Rigorous limits on the interaction strength in quantum field theory, Phys. Rev. D 81 (2010) 085037 [arXiv:0912.2726] [INSPIRE].ADSGoogle Scholar
  46. [46]
    D. Poland and D. Simmons-Duffin, Bounds on 4D conformal and superconformal field theories, JHEP 05 (2011) 017 [arXiv:1009.2087] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  47. [47]
    R. Rattazzi, S. Rychkov and A. Vichi, Central charge bounds in 4D conformal field theory, Phys. Rev. D 83 (2011) 046011 [arXiv:1009.2725] [INSPIRE].ADSGoogle Scholar
  48. [48]
    R. Rattazzi, S. Rychkov and A. Vichi, Bounds in 4D conformal field theories with global symmetry, J. Phys. A 44 (2011) 035402 [arXiv:1009.5985] [INSPIRE].ADSMathSciNetGoogle Scholar
  49. [49]
    A. Vichi, Improved bounds for CFTs with global symmetries, JHEP 01 (2012) 162 [arXiv:1106.4037] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    D. Poland, D. Simmons-Duffin and A. Vichi, Carving out the space of 4D CFTs, JHEP 05 (2012) 110 [arXiv:1109.5176] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    S. Rychkov, Conformal bootstrap in three dimensions?, arXiv:1111.2115 [INSPIRE].
  52. [52]
    S. El-Showk et al., Solving the 3D Ising model with the conformal bootstrap, Phys. Rev. D 86 (2012) 025022 [arXiv:1203.6064] [INSPIRE].ADSGoogle Scholar
  53. [53]
    P. Liendo, L. Rastelli and B.C. van Rees, The bootstrap program for boundary CFT d, JHEP 07 (2013) 113 [arXiv:1210.4258] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    S. El-Showk and M.F. Paulos, Bootstrapping conformal field theories with the extremal functional method, Phys. Rev. Lett. 111 (2013) 241601 [arXiv:1211.2810] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    C. Beem, L. Rastelli and B.C. van Rees, The \( \mathcal{N}=4 \) superconformal bootstrap, Phys. Rev. Lett. 111 (2013) 071601 [arXiv:1304.1803] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping the O(N) vector models, JHEP 06 (2014) 091 [arXiv:1307.6856] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    F. Gliozzi, More constraining conformal bootstrap, Phys. Rev. Lett. 111 (2013) 161602 [arXiv:1307.3111] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    S. El-Showk et al., Conformal field theories in fractional dimensions, Phys. Rev. Lett. 112 (2014) 141601 [arXiv:1309.5089] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    D. Gaiotto, D. Mazac and M.F. Paulos, Bootstrapping the 3d Ising twist defect, JHEP 03 (2014) 100 [arXiv:1310.5078] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    D. Bashkirov, Bootstrapping the \( \mathcal{N}=1 \) SCFT in three dimensions, arXiv:1310.8255 [INSPIRE].
  61. [61]
    S. El-Showk et al., Solving the 3d Ising model with the conformal bootstrap II. c-minimization and precise critical exponents, arXiv:1403.4545 [INSPIRE].
  62. [62]
    J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a slightly broken higher spin symmetry, Class. Quant. Grav. 30 (2013) 104003 [arXiv:1204.3882] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  63. [63]
    F.A. Dolan and H. Osborn, Conformal partial waves: further mathematical results, arXiv:1108.6194 [INSPIRE].
  64. [64]
    F.A. Dolan and H. Osborn, Conformal partial waves and the operator product expansion, Nucl. Phys. B 678 (2004) 491 [hep-th/0309180] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  65. [65]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  66. [66]
    S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  67. [67]
    T. Hartman, Entanglement entropy at large central charge, arXiv:1303.6955 [INSPIRE].
  68. [68]
    P. Bizon and J. Jałmużna, Globally regular instability of AdS 3, Phys. Rev. Lett. 111 (2013) 041102 [arXiv:1306.0317] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    A.B. Zamolodchikov, Infinite additional symmetries in two-dimensional conformal quantum field theory, Theor. Math. Phys. 65 (1985) 1205 [Teor. Mat. Fiz. 65 (1985) 347] [INSPIRE].
  70. [70]
    P. Bouwknegt and K. Schoutens, W symmetry in conformal field theory, Phys. Rept. 223 (1993) 183 [hep-th/9210010] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  71. [71]
    M. Gutperle and P. Kraus, Higher spin black holes, JHEP 05 (2011) 022 [arXiv:1103.4304] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  72. [72]
    J. de Boer and J.I. Jottar, Thermodynamics of higher spin black holes in AdS 3, JHEP 01 (2014) 023 [arXiv:1302.0816] [INSPIRE].CrossRefGoogle Scholar
  73. [73]
    A. Zamolodchikov, Conformal symmetry in two-dimensional space: recursion representation of conformal block, Theor. Math. Phys. 73 (1987) 1088.CrossRefMathSciNetGoogle Scholar
  74. [74]
    A. Zamolodchikov, Conformal symmetry in two-dimensions: an explicit recurrence formula for the conformal partial wave amplitude, Commun. Math. Phys. 96 (1984) 419 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  75. [75]
    A.B. Zamolodchikov and A.B. Zamolodchikov, Structure constants and conformal bootstrap in Liouville field theory, Nucl. Phys. B 477 (1996) 577 [hep-th/9506136] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  76. [76]
    A. Litvinov, S. Lukyanov, N. Nekrasov and A. Zamolodchikov, Classical conformal blocks and Painlevé VI, JHEP 07 (2014) 144 [arXiv:1309.4700] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    P.H. Ginsparg, Applied conformal field theory, hep-th/9108028 [INSPIRE].
  78. [78]
    D. Harlow, J. Maltz and E. Witten, Analytic continuation of Liouville theory, JHEP 12 (2011) 071 [arXiv:1108.4417] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  79. [79]
    C. Behan, Conformal blocks for highly disparate scaling dimensions, arXiv:1402.5698 [INSPIRE].
  80. [80]
    E.C. Titchmarsh, The theory of functions, 80, Oxford University Press, London U.K. (1939).Google Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • A. Liam Fitzpatrick
    • 1
    • 2
  • Jared Kaplan
    • 3
  • Matthew T. Walters
    • 3
    Email author
  1. 1.Stanford Institute for Theoretical PhysicsStanford UniversityStanfordU.S.A.
  2. 2.SLAC National Accelerator LaboratoryMenlo ParkU.S.A.
  3. 3.Department of Physics and AstronomyJohns Hopkins UniversityBaltimoreU.S.A.

Personalised recommendations