Advertisement

Black probes of Schrödinger spacetimes

  • Jay ArmasEmail author
  • Matthias Blau
Open Access
Article

Abstract

We consider black probes of Anti-de Sitter and Schrödinger spacetimes embedded in string theory and M-theory and construct perturbatively new black hole geometries. We begin by reviewing black string configurations in Anti-de Sitter dual to finite temperature Wilson loops in the deconfined phase of the gauge theory and generalise the construction to the confined phase. We then consider black strings in thermal Schrödinger, obtained via a null Melvin twist of the extremal D3-brane, and construct three distinct types of black string configurations with spacelike as well as lightlike separated boundary endpoints. One of these configurations interpolates between the Wilson loop operators, with bulk duals defined in Anti-de Sitter and another class of Wilson loop operators, with bulk duals defined in Schrödinger. The case of black membranes with boundary endpoints on the M5-brane dual to Wilson surfaces in the gauge theory is analysed in detail. Four types of black membranes, ending on the null Melvin twist of the extremal M5-brane exhibiting the Schrödinger symmetry group, are then constructed. We highlight the differences between Anti-de Sitter and Schrödinger backgrounds and make some comments on the properties of the corresponding dual gauge theories.

Keywords

Black Holes in String Theory p-branes Gauge-gravity correspondence M-Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  2. [2]
    D.T. Son, Toward an AdS/cold atoms correspondence: A Geometric realization of the Schrödinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [INSPIRE].ADSMathSciNetGoogle Scholar
  3. [3]
    J. Maldacena, D. Martelli and Y. Tachikawa, Comments on string theory backgrounds with non-relativistic conformal symmetry, JHEP 10 (2008) 072 [arXiv:0807.1100] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    A. Adams, K. Balasubramanian and J. McGreevy, Hot Spacetimes for Cold Atoms, JHEP 11 (2008) 059 [arXiv:0807.1111] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    C.P. Herzog, M. Rangamani and S.F. Ross, Heating up Galilean holography, JHEP 11 (2008) 080 [arXiv:0807.1099] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    C. Duval, M. Hassaine and P.A. Horvathy, The Geometry of Schrödinger symmetry in gravity background/non-relativistic CFT, Annals Phys. 324 (2009) 1158 [arXiv:0809.3128] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    J. Hartong and B. Rollier, Particle Number and 3D Schroedinger Holography, arXiv:1305.3653 [INSPIRE].
  8. [8]
    E. Imeroni and A. Sinha, Non-relativistic metrics with extremal limits, JHEP 09 (2009) 096 [arXiv:0907.1892] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    N. Bobev and B.C. van Rees, Schrödinger Deformations of AdS 3 × S 3, JHEP 08 (2011) 062 [arXiv:1102.2877] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    S. Detournay and M. Guica, Stringy Schrödinger truncations, JHEP 08 (2013) 121 [arXiv:1212.6792] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    M. Blau, J. Hartong and B. Rollier, Geometry of Schrödinger Space-Times, Global Coordinates and Harmonic Trapping, JHEP 07 (2009) 027 [arXiv:0904.3304] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    M. Blau, J. Hartong and B. Rollier, Geometry of Schrödinger Space-Times II: Particle and Field Probes of the Causal Structure, JHEP 07 (2010) 069 [arXiv:1005.0760] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    J. Hartong and B. Rollier, Asymptotically Schroedinger Space-Times: TsT Transformations and Thermodynamics, JHEP 01 (2011) 084 [arXiv:1009.4997] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  15. [15]
    S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large-N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    L. Mazzucato, Y. Oz and S. Theisen, Non-relativistic Branes, JHEP 04 (2009) 073 [arXiv:0810.3673] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    J. McGreevy, L. Susskind and N. Toumbas, Invasion of the giant gravitons from Anti-de Sitter space, JHEP 06 (2000) 008 [hep-th/0003075] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004)025 [hep-th/0409174] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    A. Brandhuber, N. Itzhaki, J. Sonnenschein and S. Yankielowicz, Wilson loops in the large-N limit at finite temperature, Phys. Lett. B 434 (1998) 36 [hep-th/9803137] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    S.-J. Rey, S. Theisen and J.-T. Yee, Wilson-Polyakov loop at finite temperature in large-N gauge theory and anti-de Sitter supergravity, Nucl. Phys. B 527 (1998) 171 [hep-th/9803135] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    G. Grignani, T. Harmark, A. Marini and M. Orselli, Thermal DBI action for the D3-brane at weak and strong coupling, JHEP 03 (2014) 114 [arXiv:1311.3834] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, World-Volume Effective Theory for Higher-Dimensional Black Holes, Phys. Rev. Lett. 102 (2009) 191301 [arXiv:0902.0427] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Essentials of Blackfold Dynamics, JHEP 03 (2010) 063 [arXiv:0910.1601] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    G. Grignani, T. Harmark, A. Marini, N.A. Obers and M. Orselli, Heating up the BIon, JHEP 06 (2011) 058 [arXiv:1012.1494] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    G. Grignani, T. Harmark, A. Marini, N.A. Obers and M. Orselli, Thermodynamics of the hot BIon, Nucl. Phys. B 851 (2011) 462 [arXiv:1101.1297] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    G. Grignani, T. Harmark, A. Marini, N.A. Obers and M. Orselli, Thermal string probes in AdS and finite temperature Wilson loops, JHEP 06 (2012) 144 [arXiv:1201.4862] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  27. [27]
    J. Armas, T. Harmark, N.A. Obers, M. Orselli and A.V. Pedersen, Thermal Giant Gravitons, JHEP 11 (2012) 123 [arXiv:1207.2789] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    V. Niarchos and K. Siampos, M2-M5 blackfold funnels, JHEP 06 (2012) 175 [arXiv:1205.1535] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  29. [29]
    V. Niarchos and K. Siampos, The black M2-M5 ring intersection spins, PoS Corfu2012 (2013) 088 [arXiv:1302.0854] [INSPIRE].
  30. [30]
    V. Niarchos and K. Siampos, Entropy of the self-dual string soliton, JHEP 07 (2012) 134 [arXiv:1206.2935] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    J. Armas, N.A. Obers and A.V. Pedersen, Null-Wave Giant Gravitons from Thermal Spinning Brane Probes, JHEP 10 (2013) 109 [arXiv:1306.2633] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    B. Chen and J.-B. Wu, Wilson-Polyakov surfaces and M-theory branes, JHEP 05 (2008) 046 [arXiv:0802.2173] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Blackfolds in Supergravity and String Theory, JHEP 08 (2011) 154 [arXiv:1106.4428] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  34. [34]
    S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual N = 4 SYM theory, Adv. Theor. Math. Phys. 5 (2002) 809 [hep-th/0111222] [INSPIRE].MathSciNetGoogle Scholar
  35. [35]
    V. Balasubramanian, M. Berkooz, A. Naqvi and M.J. Strassler, Giant gravitons in conformal field theory, JHEP 04 (2002) 034 [hep-th/0107119] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  36. [36]
    R. Emparan, T. Harmark, V. Niarchos, N.A. Obers and M.J. Rodriguez, The Phase Structure of Higher-Dimensional Black Rings and Black Holes, JHEP 10 (2007) 110 [arXiv:0708.2181] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  37. [37]
    J. Camps and R. Emparan, Derivation of the blackfold effective theory, JHEP 03 (2012) 038 [Erratum ibid. 1206 (2012) 155] [arXiv:1201.3506] [INSPIRE].
  38. [38]
    J. Armas, J. Gath, N. A. Obers, V. Niarchos and A.V. Pedersen, to appear.Google Scholar
  39. [39]
    V. Niarchos, Supersymmetric Perturbations of the M5 brane, JHEP 05 (2014) 023 [arXiv:1402.4132] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    S. Hellerman and J. Polchinski, Compactification in the lightlike limit, Phys. Rev. D 59 (1999) 125002 [hep-th/9711037] [INSPIRE].ADSMathSciNetGoogle Scholar
  41. [41]
    O.J. Ganor and S. Sethi, New perspectives on Yang-Mills theories with sixteen supersymmetries, JHEP 01 (1998) 007 [hep-th/9712071] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  42. [42]
    H. Mori and S. Yamaguchi, M5-branes and Wilson Surfaces in AdS 7 /CFT 6 Correspondence, Phys. Rev. D 90 (2014) 026005 [arXiv:1404.0930] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2014

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Albert Einstein Center for Fundamental Physics, Institute for Theoretical PhysicsUniversity of BernBernSwitzerland

Personalised recommendations