Quark mass anomalous dimension and \( {\varLambda}_{\overline{\mathrm{MS}}} \) from the twisted mass Dirac operator spectrum

Open Access
Article

Abstract

We investigate whether it is possible to extract the quark mass anomalous dimension and its scale dependence from the spectrum of the twisted mass Dirac operator in Lattice QCD. The answer to this question appears to be positive, provided that one goes to large enough eigenvalues, sufficiently above the non-perturbative regime. The obtained results are compared to continuum perturbation theory. By analyzing possible sources of systematic effects, we find the domain of applicability of the approach, extending from an energy scale of around 1.5 to 4 GeV. The lower limit is dictated by physics (non-perturbative effects at low energies), while the upper bound is set by the ultraviolet cut-off of present-day lattice simulations. The information about the scale dependence of the anomalous dimension allows also to extract the value of the \( {\varLambda}_{\overline{\mathrm{MS}}} \)-parameter of 2-flavour QCD, yielding the value 303(13)(25) MeV, where the first error is statistical and the second one systematic. We use gauge field configuration ensembles generated by the European Twisted Mass Collaboration (ETMC) with 2 flavours of dynamical twisted mass quarks, at 4 lattice spacings in the range between around 0.04 and 0.08 fm.

Keywords

Lattice QCD Lattice Gauge Field Theories Lattice Quantum Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    T. Banks and A. Casher, Chiral symmetry breaking in confining theories, Nucl. Phys. B 169 (1980) 103 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  2. [2]
    L. Giusti and M. Lüscher, Chiral symmetry breaking and the Banks-Casher relation in lattice QCD with Wilson quarks, JHEP 03 (2009) 013 [arXiv:0812.3638] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    K. Cichy, E. Garcia-Ramos and K. Jansen, Chiral condensate from the twisted mass Dirac operator spectrum, JHEP 10 (2013) 175 [arXiv:1303.1954] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    K. Cichy, E. Garcia-Ramos, K. Jansen and A. Shindler, Computation of the chiral condensate using N f = 2 and N f = 2 + 1 + 1 dynamical flavors of twisted mass fermions, PoS(LATTICE 2013)128 [arXiv:1312.3534] [INSPIRE].
  5. [5]
    G.P. Engel, L. Giusti, S. Lottini and R. Sommer, Chiral condensate from the Banks-Casher relation, arXiv:1309.4537 [INSPIRE].
  6. [6]
    E.V. Shuryak and J.J.M. Verbaarschot, Random matrix theory and spectral sum rules for the Dirac operator in QCD, Nucl. Phys. A 560 (1993) 306 [hep-th/9212088] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    P.H. Damgaard, U.M. Heller, R. Niclasen and K. Rummukainen, Eigenvalue distributions of the QCD Dirac operator, Phys. Lett. B 495 (2000) 263 [hep-lat/0007041] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    T.A. DeGrand and S. Schaefer, Chiral properties of two-flavor QCD in small volume and at large lattice spacing, Phys. Rev. D 72 (2005) 054503 [hep-lat/0506021] [INSPIRE].ADSGoogle Scholar
  9. [9]
    C.B. Lang, P. Majumdar and W. Ortner, The condensate for two dynamical chirally improved quarks in QCD, Phys. Lett. B 649 (2007) 225 [hep-lat/0611010] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    JLQCD collaboration, H. Fukaya et al., Two-flavor lattice QCD simulation in the ϵ-regime with exact chiral symmetry, Phys. Rev. Lett. 98 (2007) 172001 [hep-lat/0702003] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    TWQCD collaboration, H. Fukaya et al., Two-flavor lattice QCD in the ϵ-regime and chiral random matrix theory, Phys. Rev. D 76 (2007) 054503 [arXiv:0705.3322] [INSPIRE].ADSGoogle Scholar
  12. [12]
    JLQCD and TWQCD collaborations, H. Fukaya et al., Determination of the chiral condensate from QCD Dirac spectrum on the lattice, Phys. Rev. D 83 (2011) 074501 [arXiv:1012.4052] [INSPIRE].ADSGoogle Scholar
  13. [13]
    F. Bernardoni, P. Hernández, N. Garron, S. Necco and C. Pena, Probing the chiral regime of N f = 2 QCD with mixed actions, Phys. Rev. D 83 (2011) 054503 [arXiv:1008.1870] [INSPIRE].ADSGoogle Scholar
  14. [14]
    K. Splittorff and J.J.M. Verbaarschot, The microscopic twisted mass Dirac spectrum, Phys. Rev. D 85 (2012) 105008 [arXiv:1201.1361] [INSPIRE].ADSGoogle Scholar
  15. [15]
    M. Lüscher and F. Palombi, Universality of the topological susceptibility in the SU(3) gauge theory, JHEP 09 (2010) 110 [arXiv:1008.0732] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    K. Cichy, V. Drach, E. Garcia-Ramos and K. Jansen, Topological susceptibility and chiral condensate with N f = 2 + 1 + 1 dynamical flavors of maximally twisted mass fermions, PoS(Lattice 2011)102 [arXiv:1111.3322] [INSPIRE].
  17. [17]
    K. Cichy, E. Garcia-Ramos, K. Jansen and A. Shindler, Topological susceptibility from twisted mass fermions using spectral projectors, PoS(LATTICE 2013)129 [arXiv:1312.3535] [INSPIRE].
  18. [18]
    ETM collaboration, K. Cichy, E. Garcia-Ramos and K. Jansen, Topological susceptibility from the twisted mass Dirac operator spectrum, JHEP 02 (2014) 119 [arXiv:1312.5161] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    T. DeGrand, Finite-size scaling tests for SU(3) lattice gauge theory with color sextet fermions, Phys. Rev. D 80 (2009) 114507 [arXiv:0910.3072] [INSPIRE].ADSGoogle Scholar
  20. [20]
    L. Del Debbio and R. Zwicky, Hyperscaling relations in mass-deformed conformal gauge theories, Phys. Rev. D 82 (2010) 014502 [arXiv:1005.2371] [INSPIRE].ADSGoogle Scholar
  21. [21]
    A. Cheng, A. Hasenfratz and D. Schaich, Novel phase in SU(3) lattice gauge theory with 12 light fermions, Phys. Rev. D 85 (2012) 094509 [arXiv:1111.2317] [INSPIRE].ADSGoogle Scholar
  22. [22]
    A. Hasenfratz, A. Cheng, G. Petropoulos and D. Schaich, Mass anomalous dimension from Dirac eigenmode scaling in conformal and confining systems, PoS(Lattice 2012)034 [arXiv:1207.7162] [INSPIRE].
  23. [23]
    A. Cheng, A. Hasenfratz, G. Petropoulos and D. Schaich, Scale-dependent mass anomalous dimension from Dirac eigenmodes, JHEP 07 (2013) 061 [arXiv:1301.1355] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Cheng, A. Hasenfratz, G. Petropoulos and D. Schaich, Determining the mass anomalous dimension through the eigenmodes of Dirac operator, PoS(LATTICE 2013) 088 [arXiv:1311.1287] [INSPIRE].
  25. [25]
    A. Patella, GMOR-like relation in IR-conformal gauge theories, Phys. Rev. D 84 (2011) 125033 [arXiv:1106.3494] [INSPIRE].ADSGoogle Scholar
  26. [26]
    A. Patella, A precise determination of the \( \overline{\psi} \) ψ anomalous dimension in conformal gauge theories, Phys. Rev. D 86 (2012) 025006 [arXiv:1204.4432] [INSPIRE].ADSGoogle Scholar
  27. [27]
    L. Keegan, Mass anomalous dimension at large-N, PoS(Lattice 2012)044 [arXiv:1210.7247] [INSPIRE].
  28. [28]
    M.G. Perez, A. Gonzalez-Arroyo, L. Keegan and M. Okawa, Mass anomalous dimension from large-N twisted volume reduction, arXiv:1311.2395 [INSPIRE].
  29. [29]
    D. Landa-Marban, W. Bietenholz and I. Hip, Features of a 2d gauge theory with vanishing chiral condensate, arXiv:1307.0231 [INSPIRE].
  30. [30]
    M. Lüscher, P. Weisz and U. Wolff, A numerical method to compute the running coupling in asymptotically free theories, Nucl. Phys. B 359 (1991) 221 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M. Lüscher, R. Narayanan, P. Weisz and U. Wolff, The Schrödinger functionala renormalizable probe for non-Abelian gauge theories, Nucl. Phys. B 384 (1992) 168 [hep-lat/9207009] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    ALPHA collaboration, S. Capitani, M. Lüscher, R. Sommer and H. Wittig, Non-perturbative quark mass renormalization in quenched lattice QCD, Nucl. Phys. B 544 (1999) 669 [hep-lat/9810063] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    ALPHA collaboration, M. Della Morte et al., Non-perturbative quark mass renormalization in two-flavor QCD, Nucl. Phys. B 729 (2005) 117 [hep-lat/0507035] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    F. Bursa, L. Del Debbio, L. Keegan, C. Pica and T. Pickup, Mass anomalous dimension in SU(2) with two adjoint fermions, Phys. Rev. D 81 (2010) 014505 [arXiv:0910.4535] [INSPIRE].ADSGoogle Scholar
  35. [35]
    P. Fritzsch, J. Heitger and N. Tantalo, Non-perturbative improvement of quark mass renormalization in two-flavour lattice QCD, JHEP 08 (2010) 074 [arXiv:1004.3978] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    PACS-CS collaboration, S. Aoki et al., Non-perturbative renormalization of quark mass in N f = 2 + 1 QCD with the Schrödinger functional scheme, JHEP 08 (2010) 101 [arXiv:1006.1164] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    T. DeGrand, Y. Shamir and B. Svetitsky, Running coupling and mass anomalous dimension of SU(3) gauge theory with two flavors of symmetric-representation fermions, Phys. Rev. D 82 (2010) 054503 [arXiv:1006.0707] [INSPIRE].ADSGoogle Scholar
  38. [38]
    B. Svetitsky, Y. Shamir and T. DeGrand, Sextet QCD: slow running and the mass anomalous dimension, PoS(Lattice 2010)072 [arXiv:1010.3396] [INSPIRE].
  39. [39]
    T. DeGrand, Y. Shamir and B. Svetitsky, SU(4) lattice gauge theory with decuplet fermions: Schrödinger functional analysis, Phys. Rev. D 85 (2012) 074506 [arXiv:1202.2675] [INSPIRE].ADSGoogle Scholar
  40. [40]
    J.G. López, K. Jansen, D.B. Renner and A. Shindler, A quenched study of the Schrödinger functional with chirally rotated boundary conditions: applications, Nucl. Phys. B 867 (2013) 609 [arXiv:1208.4661] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    Y. Zhestkov, Domain wall fermion study of scaling in non-perturbative renormalization of quark bilinears and B K, hep-lat/0101008 [INSPIRE].
  42. [42]
    ETM collaboration, M. Constantinou et al., Non-perturbative renormalization of quark bilinear operators with N f = 2 (tmQCD) Wilson fermions and the tree-level improved gauge action, JHEP 08 (2010) 068 [arXiv:1004.1115] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    RBC and UKQCD collaborations, R. Arthur and P.A. Boyle, Step scaling with off-shell renormalisation, Phys. Rev. D 83 (2011) 114511 [arXiv:1006.0422] [INSPIRE].ADSGoogle Scholar
  44. [44]
    RBC and UKQCD collaborations, R. Arthur et al., Domain wall QCD with near-physical pions, Phys. Rev. D 87 (2013) 094514 [arXiv:1208.4412] [INSPIRE].ADSGoogle Scholar
  45. [45]
    K.G. Chetyrkin, Quark mass anomalous dimension to O(α S4), Phys. Lett. B 404 (1997) 161 [hep-ph/9703278] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    J.A.M. Vermaseren, S.A. Larin and T. van Ritbergen, The four loop quark mass anomalous dimension and the invariant quark mass, Phys. Lett. B 405 (1997) 327 [hep-ph/9703284] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    T.A. Ryttov and F. Sannino, Supersymmetry inspired QCD β-function, Phys. Rev. D 78 (2008) 065001 [arXiv:0711.3745] [INSPIRE].ADSGoogle Scholar
  48. [48]
    K. Jansen and C. Urbach, tmLQCD: a program suite to simulate Wilson twisted mass lattice QCD, Comput. Phys. Commun. 180 (2009) 2717 [arXiv:0905.3331] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  49. [49]
    R. Frezzotti and G.C. Rossi, Chirally improving Wilson fermions 1. O(a) improvement, JHEP 08 (2004) 007 [hep-lat/0306014] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    P. Weisz, Continuum limit improved lattice action for pure Yang-Mills theory (I), Nucl. Phys. B 212 (1983) 1 [INSPIRE].ADSMathSciNetGoogle Scholar
  51. [51]
    Alpha collaboration, R. Frezzotti, P.A. Grassi, S. Sint and P. Weisz, Lattice QCD with a chirally twisted mass term, JHEP 08 (2001) 058 [hep-lat/0101001] [INSPIRE].Google Scholar
  52. [52]
    R. Frezzotti and G.C. Rossi, Chirally improving Wilson fermions 2. Four-quark operators, JHEP 10 (2004) 070 [hep-lat/0407002] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    A. Shindler, Twisted mass lattice QCD, Phys. Rept. 461 (2008) 37 [arXiv:0707.4093] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  54. [54]
    F. Farchioni et al., Exploring the phase structure of lattice QCD with twisted mass quarks, Nucl. Phys. Proc. Suppl. 140 (2005) 240 [hep-lat/0409098] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    F. Farchioni et al., The phase structure of lattice QCD with Wilson quarks and renormalization group improved gluons, Eur. Phys. J. C 42 (2005) 73 [hep-lat/0410031] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    R. Frezzotti, G. Martinelli, M. Papinutto and G.C. Rossi, Reducing cutoff effects in maximally twisted lattice QCD close to the chiral limit, JHEP 04 (2006) 038 [hep-lat/0503034] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    XLF collaboration, K. Jansen, M. Papinutto, A. Shindler, C. Urbach and I. Wetzorke, Quenched scaling of Wilson twisted mass fermions, JHEP 09 (2005) 071 [hep-lat/0507010] [INSPIRE].Google Scholar
  58. [58]
    ETM collaboration, P. Boucaud et al., Dynamical twisted mass fermions with light quarks, Phys. Lett. B 650 (2007) 304 [hep-lat/0701012] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    ETM collaboration, P. Boucaud et al., Dynamical twisted mass fermions with light quarks: simulation and analysis details, Comput. Phys. Commun. 179 (2008) 695 [arXiv:0803.0224] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    ETM collaboration, R. Baron et al., Light meson physics from maximally twisted mass lattice QCD, JHEP 08 (2010) 097 [arXiv:0911.5061] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    ETM collaboration, B. Blossier et al., Average up/down, strange and charm quark masses with N f = 2 twisted mass lattice QCD, Phys. Rev. D 82 (2010) 114513 [arXiv:1010.3659] [INSPIRE].ADSGoogle Scholar
  62. [62]
    ETM collaboration, K. Jansen, F. Karbstein, A. Nagy and M. Wagner, \( {\varLambda}_{\overline{\mathrm{MS}}} \) from the static potential for QCD with n f = 2 dynamical quark flavors, JHEP 01 (2012) 025 [arXiv:1110.6859] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    C. Alexandrou, M. Constantinou, T. Korzec, H. Panagopoulos and F. Stylianou, Renormalization constants of local operators for Wilson type improved fermions, Phys. Rev. D 86 (2012) 014505 [arXiv:1201.5025] [INSPIRE].ADSGoogle Scholar
  64. [64]
    K. Cichy, K. Jansen and P. Korcyl, Non-perturbative renormalization in coordinate space for N f = 2 maximally twisted mass fermions with tree-level Symanzik improved gauge action, Nucl. Phys. B 865 (2012) 268 [arXiv:1207.0628] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    G. Martinelli, C. Pittori, C.T. Sachrajda, M. Testa and A. Vladikas, A general method for non-perturbative renormalization of lattice operators, Nucl. Phys. B 445 (1995) 81 [hep-lat/9411010] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    G. Martinelli et al., Non-perturbative improvement of composite operators with Wilson fermions, Phys. Lett. B 411 (1997) 141 [hep-lat/9705018] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    V. Giménez et al., Non-perturbative renormalization of lattice operators in coordinate space, Phys. Lett. B 598 (2004) 227 [hep-lat/0406019] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    K.G. Chetyrkin and A. Retey, Renormalization and running of quark mass and field in the regularization invariant and MS schemes at three loops and four loops, Nucl. Phys. B 583 (2000) 3 [hep-ph/9910332] [INSPIRE].ADSGoogle Scholar
  69. [69]
    K.G. Chetyrkin and A. Maier, Massless correlators of vector, scalar and tensor currents in position space at orders α s3 and α s4 : explicit analytical results, Nucl. Phys. B 844 (2011) 266 [arXiv:1010.1145] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    F. Karbstein, A. Peters and M. Wagner, \( {\varLambda}_{\overline{\mathrm{MS}}}^{\left({n}_f=2\right)} \) MS from a momentum space analysis of the quark-antiquark static potential, arXiv:1407.7503 [INSPIRE].
  71. [71]
    P. Fritzsch et al., The strange quark mass and Lambda parameter of two flavor QCD, Nucl. Phys. B 865 (2012) 397 [arXiv:1205.5380] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.NIC, DESYZeuthenGermany
  2. 2.Faculty of PhysicsAdam Mickiewicz UniversityPoznanPoland

Personalised recommendations