Extended massive gravity in three dimensions

  • Hamid R. Afshar
  • Eric A. Bergshoeff
  • Wout Merbis
Open Access


Using a first order Chern-Simons-like formulation of gravity we systematically construct higher-derivative extensions of general relativity in three dimensions. The construction ensures that the resulting higher-derivative gravity theories are free of scalar ghosts. We canonically analyze these theories and construct the gauge generators and the boundary central charges. The models we construct are all consistent with a holographic c-theorem which, however, does not imply that they are unitary. We find that Born-Infeld gravity in three dimensions is contained within these models as a subclass.


AdS-CFT Correspondence Chern-Simons Theories Classical Theories of Gravity 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    A. Achucarro and P.K. Townsend, A Chern-Simons Action for Three-Dimensional anti-de Sitter Supergravity Theories, Phys. Lett. B 180 (1986) 89 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  2. [2]
    E. Witten, (2+1)-Dimensional Gravity as an Exactly Soluble System, Nucl. Phys. B 311 (1988) 46 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    M. Bañados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2+1) black hole, Phys. Rev. D 48 (1993) 1506 [gr-qc/9302012] [INSPIRE].ADSGoogle Scholar
  5. [5]
    J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    S. Deser, R. Jackiw and S. Templeton, Topologically Massive Gauge Theories, Annals Phys. 140 (1982) 372 [Erratum ibid. 185 (1988) 406] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    E.A. Bergshoeff, O. Hohm and P.K. Townsend, Massive Gravity in Three Dimensions, Phys. Rev. Lett. 102 (2009) 201301 [arXiv:0901.1766] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    A.B. Zamolodchikov, Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory, JETP Lett. 43 (1986) 730 [INSPIRE].ADSMathSciNetGoogle Scholar
  9. [9]
    D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Renormalization group flows from holography supersymmetry and a c theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [INSPIRE].zbMATHMathSciNetGoogle Scholar
  10. [10]
    R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [arXiv:1011.5819] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    O. Hohm, A. Routh, P.K. Townsend and B. Zhang, On the Hamiltonian form of 3D massive gravity, Phys. Rev. D 86 (2012) 084035 [arXiv:1208.0038] [INSPIRE].ADSGoogle Scholar
  12. [12]
    E.A. Bergshoeff, O. Hohm, W. Merbis, A.J. Routh and P.K. Townsend, The Hamiltonian Form of Three-Dimensional Chern-Simons-like Gravity Models, arXiv:1402.1688 [INSPIRE].
  13. [13]
    E. Witten, Three-Dimensional Gravity Revisited, arXiv:0706.3359 [INSPIRE].
  14. [14]
    H. Afshar, B. Cvetkovic, S. Ertl, D. Grumiller and N. Johansson, Holograms of Conformal Chern-Simons Gravity, Phys. Rev. D 84 (2011) 041502 [arXiv:1106.6299] [INSPIRE].ADSGoogle Scholar
  15. [15]
    H. Afshar, B. Cvetkovic, S. Ertl, D. Grumiller and N. Johansson, Conformal Chern-Simons holography - lock, stock and barrel, Phys. Rev. D 85 (2012) 064033 [arXiv:1110.5644] [INSPIRE].ADSGoogle Scholar
  16. [16]
    J.H. Horne and E. Witten, Conformal Gravity in Three-dimensions as a Gauge Theory, Phys. Rev. Lett. 62 (1989) 501 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    H.R. Afshar, Flat/AdS boundary conditions in three dimensional conformal gravity, JHEP 10 (2013) 027 [arXiv:1307.4855] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    E.A. Bergshoeff, O. Hohm and P.K. Townsend, More on Massive 3D Gravity, Phys. Rev. D 79 (2009) 124042 [arXiv:0905.1259] [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    S. Carlip, The Constraint Algebra of Topologically Massive AdS Gravity, JHEP 10 (2008) 078 [arXiv:0807.4152] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M. Blagojevic and B. Cvetkovic, Canonical structure of topologically massive gravity with a cosmological constant, JHEP 05 (2009) 073 [arXiv:0812.4742] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    M. Blagojevic and B. Cvetkovic, Hamiltonian analysis of BHT massive gravity, JHEP 01 (2011) 082 [arXiv:1010.2596] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    H. Afshar, A. Bagchi, S. Detournay, D. Grumiller, S. Prohazka, and M. Riegler, Holographic Chern-Simons Theories, arXiv:1404.1919 [INSPIRE].
  23. [23]
    C. de Rham, G. Gabadadze, D. Pirtskhalava, A.J. Tolley and I. Yavin, Nonlinear Dynamics of 3D Massive Gravity, JHEP 06 (2011) 028 [arXiv:1103.1351] [INSPIRE].CrossRefGoogle Scholar
  24. [24]
    D.G. Boulware and S. Deser, Can gravitation have a finite range?, Phys. Rev. D 6 (1972) 3368 [INSPIRE].ADSGoogle Scholar
  25. [25]
    A. Sinha, On the new massive gravity and AdS/CFT, JHEP 06 (2010) 061 [arXiv:1003.0683] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    E.A. Bergshoeff, S. de Haan, W. Merbis, J. Rosseel and T. Zojer, On Three-Dimensional Tricritical Gravity, Phys. Rev. D 86 (2012) 064037 [arXiv:1206.3089] [INSPIRE].ADSGoogle Scholar
  27. [27]
    D. Grumiller and N. Johansson, Instability in cosmological topologically massive gravity at the chiral point, JHEP 07 (2008) 134 [arXiv:0805.2610] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    D. Grumiller and N. Johansson, Consistent boundary conditions for cosmological topologically massive gravity at the chiral point, Int. J. Mod. Phys. D 17 (2009) 2367 [arXiv:0808.2575] [INSPIRE].ADSMathSciNetGoogle Scholar
  29. [29]
    M. Henneaux, C. Martinez and R. Troncoso, Asymptotically anti-de Sitter spacetimes in topologically massive gravity, Phys. Rev. D 79 (2009) 081502 [arXiv:0901.2874] [INSPIRE].ADSMathSciNetGoogle Scholar
  30. [30]
    A. Maloney, W. Song and A. Strominger, Chiral Gravity, Log Gravity and Extremal CFT, Phys. Rev. D 81 (2010) 064007 [arXiv:0903.4573] [INSPIRE].ADSMathSciNetGoogle Scholar
  31. [31]
    D. Grumiller, W. Riedler, J. Rosseel and T. Zojer, Holographic applications of logarithmic conformal field theories, J. Phys. A 46 (2013) 494002 [arXiv:1302.0280] [INSPIRE].MathSciNetGoogle Scholar
  32. [32]
    S. Deser and A. Waldron, Gauge invariances and phases of massive higher spins in (A)dS, Phys. Rev. Lett. 87 (2001) 031601 [hep-th/0102166] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    M.F. Paulos, New massive gravity extended with an arbitrary number of curvature corrections, Phys. Rev. D 82 (2010) 084042 [arXiv:1005.1646] [INSPIRE].ADSGoogle Scholar
  34. [34]
    M.F. Paulos and A.J. Tolley, Massive Gravity Theories and limits of Ghost-free Bigravity models, JHEP 09 (2012) 002 [arXiv:1203.4268] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  35. [35]
    E.A. Bergshoeff, O. Hohm, J. Rosseel, E. Sezgin and P.K. Townsend, On Critical Massive (Super)Gravity in adS3, J. Phys. Conf. Ser. 314 (2011) 012009 [arXiv:1011.1153] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    E. Bergshoeff, O. Hohm, W. Merbis, A.J. Routh and P.K. Townsend, Minimal Massive 3D Gravity, Class. Quant. Grav. 31 (2014) 145008 [arXiv:1404.2867] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M. Bañados, Global charges in Chern-Simons field theory and the (2+1) black hole, Phys. Rev. D 52 (1996) 5816 [hep-th/9405171] [INSPIRE].Google Scholar
  38. [38]
    W. Li, W. Song and A. Strominger, Chiral Gravity in Three Dimensions, JHEP 04 (2008) 082 [arXiv:0801.4566] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  39. [39]
    O. Coussaert, M. Henneaux and P. van Driel, The Asymptotic dynamics of three-dimensional Einstein gravity with a negative cosmological constant, Class. Quant. Grav. 12 (1995) 2961 [gr-qc/9506019] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  40. [40]
    D. Grumiller, N. Johansson and T. Zojer, Short-cut to new anomalies in gravity duals to logarithmic conformal field theories, JHEP 01 (2011) 090 [arXiv:1010.4449] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  41. [41]
    D. Grumiller and O. Hohm, AdS 3 /LCFT(2): Correlators in New Massive Gravity, Phys. Lett. B 686 (2010) 264 [arXiv:0911.4274] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  42. [42]
    M. Alishahiha and A. Naseh, Holographic renormalization of new massive gravity, Phys. Rev. D 82 (2010) 104043 [arXiv:1005.1544] [INSPIRE].ADSMathSciNetGoogle Scholar
  43. [43]
    E. Bergshoeff and M. Ozkan, 3D Born-Infeld Gravity and Supersymmetry, arXiv:1405.6212 [INSPIRE].
  44. [44]
    E.A. Bergshoeff, S. de Haan, O. Hohm, W. Merbis and P.K. Townsend, Zwei-Dreibein Gravity: A Two-Frame-Field Model of 3D Massive Gravity, Phys. Rev. Lett. 111 (2013) 111102 [arXiv:1307.2774] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    H.R. Afshar, E.A. Bergshoeff and W. Merbis, Drei-Dreibein Gravity and beyond, To appear (2014).Google Scholar
  46. [46]
    I. Gullu, T.C. Sisman and B. Tekin, Born-Infeld extension of new massive gravity, Class. Quant. Grav. 27 (2010) 162001 [arXiv:1003.3935] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  47. [47]
    I. Gullu, T.C. Sisman and B. Tekin, c-functions in the Born-Infeld extended New Massive Gravity, Phys. Rev. D 82 (2010) 024032 [arXiv:1005.3214] [INSPIRE].ADSGoogle Scholar
  48. [48]
    D.P. Jatkar and A. Sinha, New Massive Gravity and AdS 4 counterterms, Phys. Rev. Lett. 106 (2011) 171601 [arXiv:1101.4746] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    K. Sen, A. Sinha and N.V. Suryanarayana, Counterterms, critical gravity and holography, Phys. Rev. D 85 (2012) 124017 [arXiv:1201.1288] [INSPIRE].ADSGoogle Scholar
  50. [50]
    T. Nutma, Polycritical Gravities, Phys. Rev. D 85 (2012) 124040 [arXiv:1203.5338] [INSPIRE].ADSGoogle Scholar
  51. [51]
    J. Cardy, Logarithmic conformal field theories as limits of ordinary CFTs and some physical applications, J. Phys. A 46 (2013) 494001 [arXiv:1302.4279] [INSPIRE].MathSciNetGoogle Scholar
  52. [52]
    S.F. Hassan and R.A. Rosen, Bimetric Gravity from Ghost-free Massive Gravity, JHEP 02 (2012) 126 [arXiv:1109.3515] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  53. [53]
    K. Hinterbichler and R.A. Rosen, Interacting Spin-2 Fields, JHEP 07 (2012) 047 [arXiv:1203.5783] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  54. [54]
    E.A. Bergshoeff, A.F. Goya, W. Merbis and J. Rosseel, Logarithmic AdS Waves and Zwei-Dreibein Gravity, JHEP 04 (2014) 012 [arXiv:1401.5386] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    S.F. Hassan, A. Schmidt-May and M. von Strauss, Higher Derivative Gravity and Conformal Gravity From Bimetric and Partially Massless Bimetric Theory, arXiv:1303.6940 [INSPIRE].
  56. [56]
    G. Barnich and G. Compere, Classical central extension for asymptotic symmetries at null infinity in three spacetime dimensions, Class. Quant. Grav. 24 (2007) F15 [gr-qc/0610130] [INSPIRE].CrossRefzbMATHMathSciNetGoogle Scholar
  57. [57]
    A. Bagchi, S. Detournay and D. Grumiller, Flat-Space Chiral Gravity, Phys. Rev. Lett. 109 (2012) 151301 [arXiv:1208.1658] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Hamid R. Afshar
    • 1
  • Eric A. Bergshoeff
    • 1
  • Wout Merbis
    • 1
  1. 1.Centre for Theoretical PhysicsUniversity of GroningenGroningenThe Netherlands

Personalised recommendations