Partition function of free conformal higher spin theory


We compute the canonical partition function \( \mathcal{Z} \) of non-interacting conformal higher spin (CHS) theory viewed as a collection of free spin s CFT’s in \( \mathbb{R} \) d. We discuss in detail the 4-dimensional case (where s = 1 is the standard Maxwell vector, s = 2 is the Weyl graviton, etc.), but also present a generalization for all even dimensions d. \( \mathcal{Z} \) may be found by counting the numbers of conformal operators and their descendants (modulo gauge identities and equations of motion) weighted by scaling dimensions. This conformal operator counting method requires a careful analysis of the structure of characters of relevant (conserved current, shadow field and conformal Killing tensor) representations of the conformal algebra \( \mathfrak{so} \)(d, 2). There is also a close relation to massless higher spin partition functions with alternative boundary conditions in AdS d+1. The same partition function \( \mathcal{Z} \) may also be computed from the CHS path integral on a curved S 1 × S d−1 background. This allows us to determine a simple factorized form of the CHS kinetic operator on this conformally flat background. Summing the individual conformal spin contributions \( \mathcal{Z} \) s over all spins we obtain the total partition function of the CHS theory. We also find the corresponding Casimir energy on the sphere and show that it vanishes if one uses the same regularization prescription that implies the cancellation of the total conformal anomaly a-coefficient. This happens to be true in all even dimensions d ≥ 2.

A preprint version of the article is available at ArXiv.


  1. [1]

    E.S. Fradkin and A.A. Tseytlin, Conformal supergravity, Phys. Rept. 119 (1985) 233 [INSPIRE].

  2. [2]

    E.S. Fradkin and V.Y. Linetsky, Cubic interaction in conformal theory of integer higher spin fields in four-dimensional space-time, Phys. Lett. B 231 (1989) 97 [INSPIRE].

  3. [3]

    A.A. Tseytlin, On limits of superstring in AdS 5 × S 5, Theor. Math. Phys. 133 (2002) 1376 [hep-th/0201112] [INSPIRE].

  4. [4]

    A.Y. Segal, Conformal higher spin theory, Nucl. Phys. B 664 (2003) 59 [hep-th/0207212] [INSPIRE].

  5. [5]

    M.A. Vasiliev, Bosonic conformal higher-spin fields of any symmetry, Nucl. Phys. B 829 (2010) 176 [arXiv:0909.5226] [INSPIRE].

  6. [6]

    R. Marnelius, Lagrangian conformal higher spin theory, arXiv:0805.4686 [INSPIRE].

  7. [7]

    J.L. Cardy, Operator content and modular properties of higher dimensional conformal field theories, Nucl. Phys. B 366 (1991) 403 [INSPIRE].

  8. [8]

    D. Kutasov and F. Larsen, Partition sums and entropy bounds in weakly coupled CFT, JHEP 01 (2001) 001 [hep-th/0009244] [INSPIRE].

  9. [9]

    A.A. Tseytlin, On partition function and Weyl anomaly of conformal higher spin fields, Nucl. Phys. B 877 (2013) 598 [arXiv:1309.0785] [INSPIRE].

  10. [10]

    A.A. Tseytlin, Weyl anomaly of conformal higher spins on six-sphere, Nucl. Phys. B 877 (2013) 632 [arXiv:1310.1795] [INSPIRE].

  11. [11]

    R.R. Metsaev, Arbitrary spin conformal fields in (A)dS, arXiv:1404.3712 [INSPIRE].

  12. [12]

    T. Nutma and M. Taronna, On conformal higher spin wave operators, JHEP 06 (2014) 066 [arXiv:1404.7452] [INSPIRE].

  13. [13]

    H. Liu and A.A. Tseytlin, D = 4 super Yang-Mills, D = 5 gauged supergravity and D = 4 conformal supergravity, Nucl. Phys. B 533 (1998) 88 [hep-th/9804083] [INSPIRE].

  14. [14]

    S. Giombi, I.R. Klebanov, S.S. Pufu, B.R. Safdi and G. Tarnopolsky, AdS description of induced higher-spin gauge theory, JHEP 10 (2013) 016 [arXiv:1306.5242] [INSPIRE].

  15. [15]

    S. Giombi, I.R. Klebanov and B.R. Safdi, Higher spin AdS d+1 /CFT d at one loop, Phys. Rev. D 89 (2014) 084004 [arXiv:1401.0825] [INSPIRE].

  16. [16]

    R. Gopakumar, R.K. Gupta and S. Lal, The heat kernel on AdS, JHEP 11 (2011) 010 [arXiv:1103.3627] [INSPIRE].

  17. [17]

    R.K. Gupta and S. Lal, Partition functions for higher-spin theories in AdS, JHEP 07 (2012) 071 [arXiv:1205.1130] [INSPIRE].

  18. [18]

    S. Giombi, I.R. Klebanov and A.A. Tseytlin, Partition functions and Casimir energies in higher spin AdS d+1 /CFT d , Phys. Rev. D 90 (2014) 024048 [arXiv:1402.5396] [INSPIRE].

  19. [19]

    F.A. Dolan, Character formulae and partition functions in higher dimensional conformal field theory, J. Math. Phys. 47 (2006) 062303 [hep-th/0508031] [INSPIRE].

  20. [20]

    O.V. Shaynkman, I.Y. Tipunin and M.A. Vasiliev, Unfolded form of conformal equations in M dimensions and o(M + 2) modules, Rev. Math. Phys. 18 (2006) 823 [hep-th/0401086] [INSPIRE].

  21. [21]

    R.R. Metsaev, Shadows, currents and AdS, Phys. Rev. D 78 (2008) 106010 [arXiv:0805.3472] [INSPIRE].

  22. [22]

    R.R. Metsaev, Gauge invariant two-point vertices of shadow fields, AdS/CFT and conformal fields, Phys. Rev. D 81 (2010) 106002 [arXiv:0907.4678] [INSPIRE].

  23. [23]

    R.R. Metsaev, Anomalous conformal currents, shadow fields and massive AdS fields, Phys. Rev. D 85 (2012) 126011 [arXiv:1110.3749] [INSPIRE].

  24. [24]

    X. Bekaert and M. Grigoriev, Notes on the ambient approach to boundary values of AdS gauge fields, J. Phys. A 46 (2013) 214008 [arXiv:1207.3439] [INSPIRE].

  25. [25]

    A.A. Tseytlin, Effective action in De Sitter space and conformal supergravity, Yad. Fiz. 39 (1984) 1606 [Sov. J. Nucl. Phys. 39 (1984) 1018].

  26. [26]

    E.S. Fradkin and A.A. Tseytlin, Instanton zero modes and β-functions in supergravities. 2. Conformal supergravity, Phys. Lett. B 134 (1984) 307 [INSPIRE].

  27. [27]

    S. Deser and R.I. Nepomechie, Gauge invariance versus masslessness in de Sitter space, Annals Phys. 154 (1984) 396 [INSPIRE].

  28. [28]

    S. Deser and R.I. Nepomechie, Anomalous propagation of gauge fields in conformally flat spaces, Phys. Lett. B 132 (1983) 321 [INSPIRE].

  29. [29]

    R.R. Metsaev, Ordinary-derivative formulation of conformal low spin fields, JHEP 01 (2012) 064 [arXiv:0707.4437] [INSPIRE].

  30. [30]

    R.R. Metsaev, Ordinary-derivative formulation of conformal totally symmetric arbitrary spin bosonic fields, JHEP 06 (2012) 062 [arXiv:0709.4392] [INSPIRE].

  31. [31]

    M. Kaku, P.K. Townsend and P. van Nieuwenhuizen, Gauge theory of the conformal and superconformal group, Phys. Lett. B 69 (1977) 304 [INSPIRE].

  32. [32]

    R.C. King and N.E. Samra, Dimensions of irreducible representations of the classical Lie groups, J. Phys. A 12 (1979) 2317.

  33. [33]

    S.H. Shenker and X. Yin, Vector models in the singlet sector at finite temperature, arXiv:1109.3519 [INSPIRE].

  34. [34]

    G.W. Gibbons, M.J. Perry and C.N. Pope, Partition functions, the Bekenstein bound and temperature inversion in Anti-de Sitter space and its conformal boundary, Phys. Rev. D 74 (2006) 084009 [hep-th/0606186] [INSPIRE].

  35. [35]

    G. Basar, A. Cherman, D.A. McGady and M. Yamazaki, T-reflection, arXiv:1406.6329 [INSPIRE].

  36. [36]

    X. Bekaert, N. Boulanger and P. Sundell, How higher-spin gravity surpasses the spin two barrier: no-go theorems versus yes-go examples, Rev. Mod. Phys. 84 (2012) 987 [arXiv:1007.0435] [INSPIRE].

  37. [37]

    E.S. Fradkin and M.A. Vasiliev, On the gravitational interaction of massless higher spin fields, Phys. Lett. B 189 (1987) 89 [INSPIRE].

  38. [38]

    M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3 + 1)-dimensions, Phys. Lett. B 243 (1990) 378 [INSPIRE].

  39. [39]

    M.A. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dS(d), Phys. Lett. B 567 (2003) 139 [hep-th/0304049] [INSPIRE].

  40. [40]

    H. Afshar, A. Bagchi, R. Fareghbal, D. Grumiller and J. Rosseel, Spin-3 gravity in three-dimensional flat space, Phys. Rev. Lett. 111 (2013) 121603 [arXiv:1307.4768] [INSPIRE].

  41. [41]

    H.A. Gonzalez, J. Matulich, M. Pino and R. Troncoso, Asymptotically flat spacetimes in three-dimensional higher spin gravity, JHEP 09 (2013) 016 arXiv:1307.5651] [INSPIRE].

  42. [42]

    X. Bekaert, E. Joung and J. Mourad, Effective action in a higher-spin background, JHEP 02 (2011) 048 [arXiv:1012.2103] [INSPIRE].

  43. [43]

    A. Higuchi, Symmetric tensor spherical harmonics on the N sphere and their application to the de Sitter group SO(N, 1), J. Math. Phys. 28 (1987) 1553 [Erratum ibid. 43 (2002) 6385] [INSPIRE].

  44. [44]

    R. Camporesi and A. Higuchi, Spectral functions and zeta functions in hyperbolic spaces, J. Math. Phys. 35 (1994) 4217 [INSPIRE].

  45. [45]

    N.H. Barth and S.M. Christensen, Quantizing fourth order gravity theories. 1. The functional integral, Phys. Rev. D 28 (1983) 1876 [INSPIRE].

  46. [46]

    S. Deser, E. Joung and A. Waldron, Partial masslessness and conformal gravity, J. Phys. A 46 (2013) 214019 [arXiv:1208.1307] [INSPIRE].

  47. [47]

    M.G. Eastwood, Higher symmetries of the Laplacian, Annals Math. 161 (2005) 1645 [hep-th/0206233] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Correspondence to Matteo Beccaria.

Additional information

ArXiv ePrint: 1406.3542

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beccaria, M., Bekaert, X. & Tseytlin, A.A. Partition function of free conformal higher spin theory. J. High Energ. Phys. 2014, 113 (2014).

Download citation


  • Higher Spin Symmetry
  • AdS-CFT Correspondence