Partition function of free conformal higher spin theory

Abstract

We compute the canonical partition function \( \mathcal{Z} \) of non-interacting conformal higher spin (CHS) theory viewed as a collection of free spin s CFT’s in \( \mathbb{R} \) d. We discuss in detail the 4-dimensional case (where s = 1 is the standard Maxwell vector, s = 2 is the Weyl graviton, etc.), but also present a generalization for all even dimensions d. \( \mathcal{Z} \) may be found by counting the numbers of conformal operators and their descendants (modulo gauge identities and equations of motion) weighted by scaling dimensions. This conformal operator counting method requires a careful analysis of the structure of characters of relevant (conserved current, shadow field and conformal Killing tensor) representations of the conformal algebra \( \mathfrak{so} \)(d, 2). There is also a close relation to massless higher spin partition functions with alternative boundary conditions in AdS d+1. The same partition function \( \mathcal{Z} \) may also be computed from the CHS path integral on a curved S 1 × S d−1 background. This allows us to determine a simple factorized form of the CHS kinetic operator on this conformally flat background. Summing the individual conformal spin contributions \( \mathcal{Z} \) s over all spins we obtain the total partition function of the CHS theory. We also find the corresponding Casimir energy on the sphere and show that it vanishes if one uses the same regularization prescription that implies the cancellation of the total conformal anomaly a-coefficient. This happens to be true in all even dimensions d ≥ 2.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    E.S. Fradkin and A.A. Tseytlin, Conformal supergravity, Phys. Rept. 119 (1985) 233 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. [2]

    E.S. Fradkin and V.Y. Linetsky, Cubic interaction in conformal theory of integer higher spin fields in four-dimensional space-time, Phys. Lett. B 231 (1989) 97 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. [3]

    A.A. Tseytlin, On limits of superstring in AdS 5 × S 5, Theor. Math. Phys. 133 (2002) 1376 [hep-th/0201112] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  4. [4]

    A.Y. Segal, Conformal higher spin theory, Nucl. Phys. B 664 (2003) 59 [hep-th/0207212] [INSPIRE].

    Article  ADS  Google Scholar 

  5. [5]

    M.A. Vasiliev, Bosonic conformal higher-spin fields of any symmetry, Nucl. Phys. B 829 (2010) 176 [arXiv:0909.5226] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. [6]

    R. Marnelius, Lagrangian conformal higher spin theory, arXiv:0805.4686 [INSPIRE].

  7. [7]

    J.L. Cardy, Operator content and modular properties of higher dimensional conformal field theories, Nucl. Phys. B 366 (1991) 403 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. [8]

    D. Kutasov and F. Larsen, Partition sums and entropy bounds in weakly coupled CFT, JHEP 01 (2001) 001 [hep-th/0009244] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. [9]

    A.A. Tseytlin, On partition function and Weyl anomaly of conformal higher spin fields, Nucl. Phys. B 877 (2013) 598 [arXiv:1309.0785] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. [10]

    A.A. Tseytlin, Weyl anomaly of conformal higher spins on six-sphere, Nucl. Phys. B 877 (2013) 632 [arXiv:1310.1795] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. [11]

    R.R. Metsaev, Arbitrary spin conformal fields in (A)dS, arXiv:1404.3712 [INSPIRE].

  12. [12]

    T. Nutma and M. Taronna, On conformal higher spin wave operators, JHEP 06 (2014) 066 [arXiv:1404.7452] [INSPIRE].

    Article  ADS  Google Scholar 

  13. [13]

    H. Liu and A.A. Tseytlin, D = 4 super Yang-Mills, D = 5 gauged supergravity and D = 4 conformal supergravity, Nucl. Phys. B 533 (1998) 88 [hep-th/9804083] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. [14]

    S. Giombi, I.R. Klebanov, S.S. Pufu, B.R. Safdi and G. Tarnopolsky, AdS description of induced higher-spin gauge theory, JHEP 10 (2013) 016 [arXiv:1306.5242] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. [15]

    S. Giombi, I.R. Klebanov and B.R. Safdi, Higher spin AdS d+1 /CFT d at one loop, Phys. Rev. D 89 (2014) 084004 [arXiv:1401.0825] [INSPIRE].

    ADS  Google Scholar 

  16. [16]

    R. Gopakumar, R.K. Gupta and S. Lal, The heat kernel on AdS, JHEP 11 (2011) 010 [arXiv:1103.3627] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. [17]

    R.K. Gupta and S. Lal, Partition functions for higher-spin theories in AdS, JHEP 07 (2012) 071 [arXiv:1205.1130] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. [18]

    S. Giombi, I.R. Klebanov and A.A. Tseytlin, Partition functions and Casimir energies in higher spin AdS d+1 /CFT d , Phys. Rev. D 90 (2014) 024048 [arXiv:1402.5396] [INSPIRE].

    ADS  Google Scholar 

  19. [19]

    F.A. Dolan, Character formulae and partition functions in higher dimensional conformal field theory, J. Math. Phys. 47 (2006) 062303 [hep-th/0508031] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. [20]

    O.V. Shaynkman, I.Y. Tipunin and M.A. Vasiliev, Unfolded form of conformal equations in M dimensions and o(M + 2) modules, Rev. Math. Phys. 18 (2006) 823 [hep-th/0401086] [INSPIRE].

    Article  MATH  MathSciNet  Google Scholar 

  21. [21]

    R.R. Metsaev, Shadows, currents and AdS, Phys. Rev. D 78 (2008) 106010 [arXiv:0805.3472] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  22. [22]

    R.R. Metsaev, Gauge invariant two-point vertices of shadow fields, AdS/CFT and conformal fields, Phys. Rev. D 81 (2010) 106002 [arXiv:0907.4678] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  23. [23]

    R.R. Metsaev, Anomalous conformal currents, shadow fields and massive AdS fields, Phys. Rev. D 85 (2012) 126011 [arXiv:1110.3749] [INSPIRE].

    ADS  Google Scholar 

  24. [24]

    X. Bekaert and M. Grigoriev, Notes on the ambient approach to boundary values of AdS gauge fields, J. Phys. A 46 (2013) 214008 [arXiv:1207.3439] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  25. [25]

    A.A. Tseytlin, Effective action in De Sitter space and conformal supergravity, Yad. Fiz. 39 (1984) 1606 [Sov. J. Nucl. Phys. 39 (1984) 1018].

  26. [26]

    E.S. Fradkin and A.A. Tseytlin, Instanton zero modes and β-functions in supergravities. 2. Conformal supergravity, Phys. Lett. B 134 (1984) 307 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. [27]

    S. Deser and R.I. Nepomechie, Gauge invariance versus masslessness in de Sitter space, Annals Phys. 154 (1984) 396 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. [28]

    S. Deser and R.I. Nepomechie, Anomalous propagation of gauge fields in conformally flat spaces, Phys. Lett. B 132 (1983) 321 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. [29]

    R.R. Metsaev, Ordinary-derivative formulation of conformal low spin fields, JHEP 01 (2012) 064 [arXiv:0707.4437] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. [30]

    R.R. Metsaev, Ordinary-derivative formulation of conformal totally symmetric arbitrary spin bosonic fields, JHEP 06 (2012) 062 [arXiv:0709.4392] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. [31]

    M. Kaku, P.K. Townsend and P. van Nieuwenhuizen, Gauge theory of the conformal and superconformal group, Phys. Lett. B 69 (1977) 304 [INSPIRE].

    Article  ADS  Google Scholar 

  32. [32]

    R.C. King and N.E. Samra, Dimensions of irreducible representations of the classical Lie groups, J. Phys. A 12 (1979) 2317.

    ADS  Google Scholar 

  33. [33]

    S.H. Shenker and X. Yin, Vector models in the singlet sector at finite temperature, arXiv:1109.3519 [INSPIRE].

  34. [34]

    G.W. Gibbons, M.J. Perry and C.N. Pope, Partition functions, the Bekenstein bound and temperature inversion in Anti-de Sitter space and its conformal boundary, Phys. Rev. D 74 (2006) 084009 [hep-th/0606186] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  35. [35]

    G. Basar, A. Cherman, D.A. McGady and M. Yamazaki, T-reflection, arXiv:1406.6329 [INSPIRE].

  36. [36]

    X. Bekaert, N. Boulanger and P. Sundell, How higher-spin gravity surpasses the spin two barrier: no-go theorems versus yes-go examples, Rev. Mod. Phys. 84 (2012) 987 [arXiv:1007.0435] [INSPIRE].

    Article  ADS  Google Scholar 

  37. [37]

    E.S. Fradkin and M.A. Vasiliev, On the gravitational interaction of massless higher spin fields, Phys. Lett. B 189 (1987) 89 [INSPIRE].

    Article  ADS  Google Scholar 

  38. [38]

    M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3 + 1)-dimensions, Phys. Lett. B 243 (1990) 378 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. [39]

    M.A. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dS(d), Phys. Lett. B 567 (2003) 139 [hep-th/0304049] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. [40]

    H. Afshar, A. Bagchi, R. Fareghbal, D. Grumiller and J. Rosseel, Spin-3 gravity in three-dimensional flat space, Phys. Rev. Lett. 111 (2013) 121603 [arXiv:1307.4768] [INSPIRE].

    Article  ADS  Google Scholar 

  41. [41]

    H.A. Gonzalez, J. Matulich, M. Pino and R. Troncoso, Asymptotically flat spacetimes in three-dimensional higher spin gravity, JHEP 09 (2013) 016 arXiv:1307.5651] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. [42]

    X. Bekaert, E. Joung and J. Mourad, Effective action in a higher-spin background, JHEP 02 (2011) 048 [arXiv:1012.2103] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. [43]

    A. Higuchi, Symmetric tensor spherical harmonics on the N sphere and their application to the de Sitter group SO(N, 1), J. Math. Phys. 28 (1987) 1553 [Erratum ibid. 43 (2002) 6385] [INSPIRE].

  44. [44]

    R. Camporesi and A. Higuchi, Spectral functions and zeta functions in hyperbolic spaces, J. Math. Phys. 35 (1994) 4217 [INSPIRE].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  45. [45]

    N.H. Barth and S.M. Christensen, Quantizing fourth order gravity theories. 1. The functional integral, Phys. Rev. D 28 (1983) 1876 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  46. [46]

    S. Deser, E. Joung and A. Waldron, Partial masslessness and conformal gravity, J. Phys. A 46 (2013) 214019 [arXiv:1208.1307] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  47. [47]

    M.G. Eastwood, Higher symmetries of the Laplacian, Annals Math. 161 (2005) 1645 [hep-th/0206233] [INSPIRE].

    Article  MATH  MathSciNet  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Matteo Beccaria.

Additional information

ArXiv ePrint: 1406.3542

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beccaria, M., Bekaert, X. & Tseytlin, A.A. Partition function of free conformal higher spin theory. J. High Energ. Phys. 2014, 113 (2014). https://doi.org/10.1007/JHEP08(2014)113

Download citation

Keywords

  • Higher Spin Symmetry
  • AdS-CFT Correspondence