Advertisement

The NSVZ β-function and the Schwinger-Dyson equations for \( \mathcal{N} \) = 1 SQED with N f flavors, regularized by higher derivatives

  • K. V. StepanyantzEmail author
Open Access
Article

Abstract

The effective diagram technique based on the Schwinger-Dyson equations is constructed for \( \mathcal{N} \) = 1 SQED with N f flavors, regularized by higher derivatives. Using these effective diagrams, it is possible to derive the exact NSVZ relation between the β-function and the anomalous dimension of the matter superfields exactly in all loops, if the renormalization group functions are defined in terms of the bare coupling constant. In particular, we verify that all integrals which give the β-function defined in terms of the bare coupling constant are integrals of double total derivatives and prove some identities relating Green functions.

Keywords

Supersymmetric gauge theory Renormalization Group 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Y. Golfand and E.P. Likhtman, Extension of the Algebra of Poincaré Group Generators and Violation of p Invariance, JETP Lett. 13 (1971) 323 [Pisma Zh. Eksp. Teor. Fiz. 13 (1971) 452] [INSPIRE].
  2. [2]
    D.V. Volkov and V.P. Akulov, Is the Neutrino a Goldstone Particle?, Phys. Lett. B 46 (1973) 109 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M.T. Grisaru and W. Siegel, Supergraphity. 2. Manifestly Covariant Rules and Higher Loop Finiteness, Nucl. Phys. B 201 (1982) 292 [Erratum ibid. B 206 (1982) 496] [INSPIRE].
  4. [4]
    S. Mandelstam, Light Cone Superspace and the Ultraviolet Finiteness of the N = 4 Model, Nucl. Phys. B 213 (1983) 149 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    L. Brink, O. Lindgren and B.E.W. Nilsson, N=4 Yang-Mills Theory on the Light Cone, Nucl. Phys. B 212 (1983) 401 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    P.S. Howe, K.S. Stelle and P.K. Townsend, Miraculous Ultraviolet Cancellations in Supersymmetry Made Manifest, Nucl. Phys. B 236 (1984) 125 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    P.S. Howe, K.S. Stelle and P.C. West, A Class of Finite Four-Dimensional Supersymmetric Field Theories, Phys. Lett. B 124 (1983) 55 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M.T. Grisaru, W. Siegel and M. Roček, Improved Methods for Supergraphs, Nucl. Phys. B 159 (1979) 429 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Exact Gell-Mann-Low Function of Supersymmetric Yang-Mills Theories from Instanton Calculus, Nucl. Phys. B 229 (1983) 381 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    D.R.T. Jones, More on the Axial Anomaly in Supersymmetric Yang-Mills Theory, Phys. Lett. B 123 (1983) 45 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, β-function in Supersymmetric Gauge Theories: Instantons Versus Traditional Approach, Phys. Lett. B 166 (1986) 329 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M.A. Shifman and A.I. Vainshtein, Instantons versus supersymmetry: Fifteen years later, hep-th/9902018 [INSPIRE].
  13. [13]
    D.R.T. Jones and L. Mezincescu, The β-function in Supersymmetric Yang-Mills Theory, Phys. Lett. B 136 (1984) 242 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    D.R.T. Jones and L. Mezincescu, The Chiral Anomaly and a Class of Two Loop Finite Supersymmetric Gauge Theories, Phys. Lett. B 138 (1984) 293 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A.I. Vainshtein, V.I. Zakharov, V.A. Novikov and M.A. Shifman, The axial anomaly puzzle in supersymmetry gauge theories, JETP Lett. 40 (1984) 920 [INSPIRE].ADSGoogle Scholar
  16. [16]
    V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Supersymmetric Extension of the Adler-bardeen Theorem, Phys. Lett. B 157 (1985) 169 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    M.A. Shifman and A.I. Vainshtein, Solution of the Anomaly Puzzle in SUSY Gauge Theories and the Wilson Operator Expansion, Nucl. Phys. B 277 (1986) 456 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S.L. Adler and W.A. Bardeen, Absence of higher order corrections in the anomalous axial vector divergence equation, Phys. Rev. 182 (1969) 1517 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M.T. Grisaru and P.C. West, Supersymmetry and the Adler-bardeen Theorem, Nucl. Phys. B 254 (1985) 249 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    E. Kraus, C. Rupp and K. Sibold, Supersymmetric Yang-Mills theories with local coupling: The Supersymmetric gauge, Nucl. Phys. B 661 (2003) 83 [hep-th/0212064] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    N. Arkani-Hamed and H. Murayama, Holomorphy, rescaling anomalies and exact β-functions in supersymmetric gauge theories, JHEP 06 (2000) 030 [hep-th/9707133] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    A.I. Vainshtein, V.I. Zakharov and M.A. Shifman, Gell-Mann-Low function in supersymmetric electrodynamics, JETP Lett. 42 (1985) 224 [INSPIRE].ADSMathSciNetGoogle Scholar
  23. [23]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, EXACT Gell-Mann-Low function in supersymmetric electrodynamics, Phys. Lett. B 166 (1986) 334 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S. Ferrara and B. Zumino, Supergauge Invariant Yang-Mills Theories, Nucl. Phys. B 79 (1974) 413 [INSPIRE].ADSGoogle Scholar
  25. [25]
    D.R.T. Jones, Charge Renormalization in a Supersymmetric Yang-Mills Theory, Phys. Lett. B 72 (1977) 199 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    G. ’t Hooft and M.J.G. Veltman, Regularization and Renormalization of Gauge Fields, Nucl. Phys. B 44 (1972) 189 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  27. [27]
    C.G. Bollini and J.J. Giambiagi, Dimensional Renormalization: The Number of Dimensions as a Regularizing Parameter, Nuovo Cim. B 12 (1972) 20 [INSPIRE].Google Scholar
  28. [28]
    J.F. Ashmore, A Method of Gauge Invariant Regularization, Lett. Nuovo Cim. 4 (1972) 289 [INSPIRE].CrossRefGoogle Scholar
  29. [29]
    G.M. Cicuta and E. Montaldi, Analytic renormalization via continuous space dimension, Lett. Nuovo Cim. 4 (1972) 329 [INSPIRE].CrossRefGoogle Scholar
  30. [30]
    R. Delbourgo and V.B. Prasad, Supersymmetry in the Four-Dimensional Limit, J. Phys. G 1 (1975) 377 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    W. Siegel, Supersymmetric Dimensional Regularization via Dimensional Reduction, Phys. Lett. B 84 (1979) 193 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    L. Mihaila, Precision Calculations in Supersymmetric Theories, Adv. High Energy Phys. 2013 (2013) 607807 [arXiv:1310.6178] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  33. [33]
    W.A. Bardeen, A.J. Buras, D.W. Duke and T. Muta, Deep Inelastic Scattering Beyond the Leading Order in Asymptotically Free Gauge Theories, Phys. Rev. D 18 (1978) 3998 [INSPIRE].ADSGoogle Scholar
  34. [34]
    L.V. Avdeev and O.V. Tarasov, The Three Loop β-function in the N = 1, N = 2, N = 4 Supersymmetric Yang-Mills Theories, Phys. Lett. B 112 (1982) 356 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    I. Jack, D.R.T. Jones and C.G. North, Scheme dependence and the NSVZ β-function, Nucl. Phys. B 486 (1997) 479 [hep-ph/9609325] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    R.V. Harlander, D.R.T. Jones, P. Kant, L. Mihaila and M. Steinhauser, Four-loop β-function and mass anomalous dimension in dimensional reduction, JHEP 12 (2006) 024 [hep-ph/0610206] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  37. [37]
    I. Jack, D.R.T. Jones and C.G. North, N=1 supersymmetry and the three loop gauge β-function, Phys. Lett. B 386 (1996) 138 [hep-ph/9606323] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    I. Jack, D.R.T. Jones and A. Pickering, The Connection between DRED and NSVZ, Phys. Lett. B 435 (1998) 61 [hep-ph/9805482] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  39. [39]
    W. Siegel, Inconsistency of Supersymmetric Dimensional Regularization, Phys. Lett. B 94 (1980) 37 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    L.V. Avdeev, Noninvariance of Regularization by Dimensional Reduction: An Explicit Example of Supersymmetry Breaking, Phys. Lett. B 117 (1982) 317 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    L.V. Avdeev and A.A. Vladimirov, Dimensional Regularization and Supersymmetry, Nucl. Phys. B 219 (1983) 262 [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    V.N. Velizhanin, Three-loop renormalization of the N = 1, N = 2, N = 4 supersymmetric Yang-Mills theories, Nucl. Phys. B 818 (2009) 95 [arXiv:0809.2509] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  43. [43]
    V.N. Velizhanin, Vanishing of the four-loop charge renormalization function in N = 4 SYM theory, Phys. Lett. B 696 (2011) 560 [arXiv:1008.2198] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  44. [44]
    M.A. Shifman and A.I. Vainshtein, Operator product expansion and calculation of the two loop Gell-Mann-Low function, Sov. J. Nucl. Phys. 44 (1986) 321 [INSPIRE].Google Scholar
  45. [45]
    D.Z. Freedman, K. Johnson and J.I. Latorre, Differential regularization and renormalization: A New method of calculation in quantum field theory, Nucl. Phys. B 371 (1992) 353 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  46. [46]
    J. Mas, M. Pérez-Victoria and C. Seijas, The β-function of N = 1 SYM in differential renormalization, JHEP 03 (2002) 049 [hep-th/0202082] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    A.A. Slavnov, Invariant regularization of nonlinear chiral theories, Nucl. Phys. B 31 (1971) 301 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  48. [48]
    A.A. Slavnov, Invariant regularization of gauge theories, Theor. Math. Phys. 13 (1972) 1064 [Teor. Mat. Fiz. 13 (1972) 174].Google Scholar
  49. [49]
    V.K. Krivoshchekov, Invariant Regularizations for Supersymmetric Gauge Theories, Theor. Math. Phys. 36 (1978) 745 [Teor. Mat. Fiz. 36 (1978) 291].Google Scholar
  50. [50]
    P.C. West, Higher Derivative Regulation of Supersymmetric Theories, Nucl. Phys. B 268 (1986) 113 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    V.K. Krivoshchekov, Invariant regularization for N = 2 superfield perturbation theory, Phys. Lett. B 149 (1984) 128 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    I.L. Buchbinder and K.V. Stepanyantz, The higher derivative regularization and quantum corrections in N = 2 supersymmetric theories, Nucl. Phys. B 883 (2014) 20 [arXiv:1402.5309] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  53. [53]
    C.P. Martin and F. Ruiz Ruiz, Higher covariant derivative Pauli-Villars regularization does not lead to a consistent QCD, Nucl. Phys. B 436 (1995) 545 [hep-th/9410223] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    M. Asorey and F. Falceto, On the consistency of the regularization of gauge theories by high covariant derivatives, Phys. Rev. D 54 (1996) 5290 [hep-th/9502025] [INSPIRE].ADSGoogle Scholar
  55. [55]
    T.D. Bakeyev and A.A. Slavnov, Higher covariant derivative regularization revisited, Mod. Phys. Lett. A 11 (1996) 1539 [hep-th/9601092] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    D.J. Gross and F. Wilczek, Ultraviolet Behavior of Nonabelian Gauge Theories, Phys. Rev. Lett. 30 (1973) 1343 [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    H.D. Politzer, Reliable Perturbative Results for Strong Interactions?, Phys. Rev. Lett. 30 (1973) 1346 [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    P.I. Pronin and K. Stepanyantz, One loop counterterms for higher derivative regularized Lagrangians, Phys. Lett. B 414 (1997) 117 [hep-th/9707008] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    A.A. Soloshenko and K.V. Stepanyantz, Three loop β-function for N = 1 supersymmetric electrodynamics, regularized by higher derivatives, Theor. Math. Phys. 140 (2004) 1264 [hep-th/0304083] [INSPIRE].CrossRefzbMATHGoogle Scholar
  60. [60]
    A.B. Pimenov, E.S. Shevtsova and K.V. Stepanyantz, Calculation of two-loop β-function for general N = 1 supersymmetric Yang-Mills theory with the higher covariant derivative regularization, Phys. Lett. B 686 (2010) 293 [arXiv:0912.5191] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  61. [61]
    K.V. Stepanyantz, Factorization of integrals, defining the β-function, into integrals of total derivatives in N = 1 SQED, regularized by higher derivatives, Int. J. Theor. Phys. 51 (2012) 276 [arXiv:1101.2956] [INSPIRE].CrossRefzbMATHGoogle Scholar
  62. [62]
    K.V. Stepanyantz, Quantum corrections in N = 1 supersymmetric theories with cubic superpotential, regularized by higher covariant derivatives, Phys. Part. Nucl. Lett. 8 (2011) 321 [INSPIRE].CrossRefGoogle Scholar
  63. [63]
    A.V. Smilga and A. Vainshtein, Background field calculations and nonrenormalization theorems in 4 − D supersymmetric gauge theories and their low-dimensional descendants, Nucl. Phys. B 704 (2005) 445 [hep-th/0405142] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  64. [64]
    K.V. Stepanyantz, Factorization of integrals defining the two-loop β-function for the general renormalizable \( \mathcal{N} \) = 1 SYM theory, regularized by the higher covariant derivatives, into integrals of double total derivatives, arXiv:1108.1491 [INSPIRE].
  65. [65]
    K.V. Stepanyantz, Derivation of the exact NSVZ β-function in N = 1 SQED regularized by higher derivatives by summation of Feynman diagrams, J. Phys. Conf. Ser. 343 (2012) 012115 [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    K.V. Stepanyantz, Multiloop calculations in supersymmetric theories with the higher covariant derivative regularization, J. Phys. Conf. Ser. 368 (2012) 012052 [arXiv:1203.5525] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    K.V. Stepanyantz, Derivation of the exact NSVZ β-function in N = 1 SQED, regularized by higher derivatives, by direct summation of Feynman diagrams, Nucl. Phys. B 852 (2011) 71 [arXiv:1102.3772] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  68. [68]
    A.L. Kataev and K.V. Stepanyantz, NSVZ scheme with the higher derivative regularization for \( \mathcal{N} \) = 1 SQED, Nucl. Phys. B 875 (2013) 459 [arXiv:1305.7094] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  69. [69]
    A.L. Kataev and K.V. Stepanyantz, Scheme independent consequence of the NSVZ relation for N = 1 SQED with N f flavors, Phys. Lett. B 730 (2014) 184 [arXiv:1311.0589] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    A.A. Vladimirov, Renormalization Group Equations in Different Approaches, Theor. Math. Phys. 25 (1976) 1170 [INSPIRE].CrossRefGoogle Scholar
  71. [71]
    K. Stepanyantz, Summation of diagrams in N = 1 supersymmetric electrodynamics, regularized by higher derivatives, Theor. Math. Phys. 146 (2006) 321 [Teor. Mat. Fiz. 146 (2006) 385] [hep-th/0511012] [INSPIRE].
  72. [72]
    K.V. Stepanyantz, Investigation of the anomaly puzzle in N = 1 supersymmetric electrodynamics, Theor. Math. Phys. 142 (2005) 29 [hep-th/0407201] [INSPIRE].CrossRefGoogle Scholar
  73. [73]
    D.J. Broadhurst, Four loop Dyson-Schwinger-Johnson anatomy, Phys. Lett. B 466 (1999) 319 [hep-ph/9909336] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    A.B. Pimenov, E.S. Shevtsova, A.A. Soloshenko and K.V. Stepanyantz, Higher derivative regularization and quantum corrections in N = 1 supersymmetric theories, arXiv:0712.1721 [INSPIRE].
  75. [75]
    A.B. Pimenov and K.V. Stepanyantz, Four-loop verification of algorithm for Feynman diagrams summation in N = 1 supersymmetric electrodynamics, Theor. Math. Phys. 147 (2006) 687 [hep-th/0603030] [INSPIRE].CrossRefzbMATHGoogle Scholar
  76. [76]
    P.C. West, Introduction to supersymmetry and supergravity, World Scientific, Singapore, Singapore (1990).CrossRefzbMATHGoogle Scholar
  77. [77]
    I.L. Buchbinder and S. M. Kuzenko, Ideas and methods of supersymmetry and supergravity: Or a walk through superspace, IOP, Bristol, U.K. (1998).zbMATHGoogle Scholar
  78. [78]
    L.D. Faddeev and A.A. Slavnov, Gauge Fields. Introduction To Quantum Theory, Nauka, Moscow (1978) and Front. Phys. 50 (1980) 1 [Front. Phys. 83 (1990) 1].Google Scholar
  79. [79]
    A.A. Slavnov, The Pauli-Villars Regularization for Nonabelian Gauge Theories, Theor. Math. Phys. 33 (1977) 977 [Teor. Mat. Fiz. 33 (1977) 210].Google Scholar
  80. [80]
    A.L. Kataev, Conformal symmetry limit of QED and QCD and identities between perturbative contributions to deep-inelastic scattering sum rules, JHEP 02 (2014) 092 [arXiv:1305.4605] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    E.S. Shevtsova and K.V. Stepanyantz, A new relation restricting the Green functions of N =1 supersymmetric electrodynamics, Moscow Univ. Phys. Bull. 64 (2009) 250.ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Department of Theoretical Physics, Faculty of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations