Light neutralino dark matter: direct/indirect detection and collider searches

Open Access
Article

Abstract

We study the neutralino being the Lightest Supersymmetric Particle (LSP) as a cold Dark Matter (DM) candidate with a mass less than 40 GeV in the framework of the Next-to-Minimal-Supersymmetric-Standard-Model (NMSSM). We find that with the current collider constraints from LEP, the Tevatron and the LHC, there are three types of light DM solutions consistent with the direct/indirect searches as well as the relic abundance considerations: (i) A1, H1-funnels, (ii) stau coannihilation and (iii) sbottom coannihilation. Type-(i) may take place in any theory with a light scalar (or pseudo-scalar) near the LSP pair threshold; while Type-(ii) and (iii) could occur in the framework of Minimal-Supersymmetric-Standard-Model (MSSM) as well. We present a comprehensive study on the properties of these solutions and point out their immediate relevance to the experiments of the underground direct detection such as superCDMS and LUX/LZ, and the astro-physical indirect search such as Fermi-LAT. We also find that the decays of the SM-like Higgs boson may be modified appreciably and the new decay channels to the light SUSY particles may be sizable. The new light CP-even and CP-odd Higgs bosons will decay to a pair of LSPs as well as other observable final states, leading to interesting new Higgs phenomenology at colliders. For the light sfermion searches, the signals would be very challenging to observe at the LHC given the current bounds. However, a high energy and high luminosity lepton collider, such as the ILC, would be able to fully cover these scenarios by searching for events with large missing energy plus charged tracks or displaced vertices.

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    DAMA, LIBRA collaboration, R. Bernabei et al., New results from DAMA/LIBRA, Eur. Phys. J. C 67 (2010) 39 [arXiv:1002.1028] [INSPIRE].ADSGoogle Scholar
  2. [2]
    C.E. Aalseth et al., Search for an annual modulation in a p-type point contact germanium dark matter detector, Phys. Rev. Lett. 107 (2011) 141301 [arXiv:1106.0650] [INSPIRE].ADSGoogle Scholar
  3. [3]
    G. Angloher et al., Results from 730 kg days of the CRESST-II dark matter search, Eur. Phys. J. C 72 (2012) 1971 [arXiv:1109.0702] [INSPIRE].ADSGoogle Scholar
  4. [4]
    CDMS collaboration, R. Agnese et al., Silicon detector dark matter results from the final exposure of CDMS II, Phys. Rev. Lett. 111 (2013) 251301 [arXiv:1304.4279] [INSPIRE].ADSGoogle Scholar
  5. [5]
    M. Felizardo et al., Final analysis and results of the phase II SIMPLE dark matter search, Phys. Rev. Lett. 108 (2012) 201302 [arXiv:1106.3014] [INSPIRE].ADSGoogle Scholar
  6. [6]
    PICASSO collaboration, S. Archambault et al., Constraints on low-mass WIMP interactions on 19 F from PICASSO, Phys. Lett. B 711 (2012) 153 [arXiv:1202.1240] [INSPIRE].ADSGoogle Scholar
  7. [7]
    COUPP collaboration, E. Behnke et al., First dark matter search results from a 4 kg CF 3 I bubble chamber operated in a deep underground site, Phys. Rev. D 86 (2012) 052001 [arXiv:1204.3094] [INSPIRE].ADSGoogle Scholar
  8. [8]
    XENON10 collaboration, J. Angle et al., A search for light dark matter in XENON10 data, Phys. Rev. Lett. 107 (2011) 051301 [Erratum ibid. 110 (2013) 249901] [arXiv:1104.3088] [INSPIRE].
  9. [9]
    XENON100 collaboration, E. Aprile et al., Dark matter results from 225 live days of XENON100 data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].ADSGoogle Scholar
  10. [10]
    XENON1T collaboration, E. Aprile, The XENON1T dark matter search experiment, arXiv:1206.6288 [INSPIRE].
  11. [11]
    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford underground research facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].ADSGoogle Scholar
  12. [12]
    SuperCDMS collaboration, R. Agnese et al., Search for low-mass WIMPs with SuperCDMS, Phys. Rev. Lett. 112 (2014) 241302 [arXiv:1402.7137] [INSPIRE].ADSGoogle Scholar
  13. [13]
    Fermi-LAT collaboration, M. Ackermann et al., Dark matter constraints from observations of 25 Milky Way satellite galaxies with the Fermi Large Area Telescope, Phys. Rev. D 89 (2014) 042001 [arXiv:1310.0828] [INSPIRE].ADSGoogle Scholar
  14. [14]
    AMS collaboration, First result from the alpha magnetic spectrometer on the international space station: Precision measurement of the positron fraction in primary cosmic rays of 0.5-350 GeV, Phys. Rev. Lett. 110 (2013) 141102 [INSPIRE].ADSGoogle Scholar
  15. [15]
    H.E.S.S. collaboration, A. Abramowski et al., Search for photon line-like signatures from dark matter annihilations with H.E.S.S., Phys. Rev. Lett. 110 (2013) 041301 [arXiv:1301.1173] [INSPIRE].ADSGoogle Scholar
  16. [16]
    MAGIC collaboration, J. Aleksic et al., Searches for dark matter annihilation signatures in the segue 1 satellite galaxy with the MAGIC-I telescope, JCAP 06 (2011) 035 [arXiv:1103.0477] [INSPIRE].ADSGoogle Scholar
  17. [17]
    Veritas collaboration, T. Arlen et al., Constraints on cosmic rays, magnetic fields and dark matter from gamma-ray observations of the Coma cluster of galaxies with VERITAS and Fermi, Astrophys. J. 757 (2012) 123 [arXiv:1208.0676] [INSPIRE].ADSGoogle Scholar
  18. [18]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [INSPIRE].
  19. [19]
    D. Larson et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: power spectra and WMAP-derived parameters, Astrophys. J. Suppl. 192 (2011) 16 [arXiv:1001.4635] [INSPIRE].ADSGoogle Scholar
  20. [20]
    WMAP collaboration, G. Hinshaw et al., Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results, Astrophys. J. Suppl. 208 (2013) 19 [arXiv:1212.5226] [INSPIRE].ADSGoogle Scholar
  21. [21]
    IceCube collaboration, M.G. Aartsen et al., IceCube search for dark matter annihilation in nearby galaxies and galaxy clusters, Phys. Rev. D 88 (2013) 122001 [arXiv:1307.3473] [INSPIRE].ADSGoogle Scholar
  22. [22]
    DELPHI collaboration, J. Abdallah et al., Photon events with missing energy in e + e collisions at \( \sqrt{s} \) = 130 GeV to 209 GeV, Eur. Phys. J. C 38 (2005) 395 [hep-ex/0406019] [INSPIRE].ADSGoogle Scholar
  23. [23]
    DELPHI collaboration, J. Abdallah et al., Search for one large extra dimension with the DELPHI detector at LEP, Eur. Phys. J. C 60 (2009) 17 [arXiv:0901.4486] [INSPIRE].ADSGoogle Scholar
  24. [24]
    P.H.B. Kevin Burkett, E. James and P. Savard, Search for extra dimensions in jets+missing energy in RUNII, see website.
  25. [25]
    Y. Bai, P.J. Fox and R. Harnik, The Tevatron at the frontier of dark matter direct detection, JHEP 12 (2010) 048 [arXiv:1005.3797] [INSPIRE].ADSGoogle Scholar
  26. [26]
    CMS collaboration, Search for dark matter and large extra dimensions in monojet events in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 09 (2012) 094 [arXiv:1206.5663] [INSPIRE].ADSGoogle Scholar
  27. [27]
    ATLAS collaboration, Search for dark matter candidates and large extra dimensions in events with a jet and missing transverse momentum with the ATLAS detector, JHEP 04 (2013) 075 [arXiv:1210.4491] [INSPIRE].ADSGoogle Scholar
  28. [28]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].ADSGoogle Scholar
  29. [29]
    J.H. Davis, C. McCabe and C. Boehm, Quantifying the evidence for dark matter in CoGeNT data, arXiv:1405.0495 [INSPIRE].
  30. [30]
    D. Hooper and L. Goodenough, Dark matter annihilation in the galactic center as seen by the Fermi Gamma Ray Space Telescope, Phys. Lett. B 697 (2011) 412 [arXiv:1010.2752] [INSPIRE].ADSGoogle Scholar
  31. [31]
    D. Hooper and T.R. Slatyer, Two emission mechanisms in the Fermi bubbles: a possible signal of annihilating dark matter, Phys. Dark Univ. 2 (2013) 118 [arXiv:1302.6589] [INSPIRE].Google Scholar
  32. [32]
    T. Daylan et al., The characterization of the gamma-ray signal from the central Milky Way: a compelling case for annihilating dark matter, arXiv:1402.6703 [INSPIRE].
  33. [33]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].ADSGoogle Scholar
  34. [34]
    N. Arkani-Hamed, A. Delgado and G.F. Giudice, The well-tempered neutralino, Nucl. Phys. B 741 (2006) 108 [hep-ph/0601041] [INSPIRE].ADSGoogle Scholar
  35. [35]
    M. Farina et al., Implications of XENON100 and LHC results for dark matter models, Nucl. Phys. B 853 (2011) 607 [arXiv:1104.3572] [INSPIRE].ADSGoogle Scholar
  36. [36]
    J.-J. Cao, Z. Heng, J.M. Yang and J. Zhu, Higgs decay to dark matter in low energy SUSY: is it detectable at the LHC ?, JHEP 06 (2012) 145 [arXiv:1203.0694] [INSPIRE].ADSGoogle Scholar
  37. [37]
    H. Baer, V. Barger, A. Lessa and X. Tata, Discovery potential for SUSY at a high luminosity upgrade of LHC14, Phys. Rev. D 86 (2012) 117701 [arXiv:1207.4846] [INSPIRE].ADSGoogle Scholar
  38. [38]
    R. Allahverdi, B. Dutta and K. Sinha, Non-thermal higgsino dark matter: cosmological motivations and implications for a 125 GeV Higgs, Phys. Rev. D 86 (2012) 095016 [arXiv:1208.0115] [INSPIRE].ADSGoogle Scholar
  39. [39]
    J. Hisano, K. Ishiwata and N. Nagata, Direct search of dark matter in high-scale supersymmetry, Phys. Rev. D 87 (2013) 035020 [arXiv:1210.5985] [INSPIRE].ADSGoogle Scholar
  40. [40]
    K. Kowalska, L. Roszkowski and E.M. Sessolo, Two ultimate tests of constrained supersymmetry, JHEP 06 (2013) 078 [arXiv:1302.5956] [INSPIRE].ADSGoogle Scholar
  41. [41]
    C. Boehm, M.J. Dolan and C. McCabe, A lower bound on the mass of cold thermal dark matter from Planck, JCAP 08 (2013) 041 [arXiv:1303.6270] [INSPIRE].ADSGoogle Scholar
  42. [42]
    C. Arina, G. Bertone and H. Silverwood, Complementarity of direct and indirect dark matter detection experiments, Phys. Rev. D 88 (2013) 013002 [arXiv:1304.5119] [INSPIRE].ADSGoogle Scholar
  43. [43]
    S. Scopel, N. Fornengo and A. Bottino, Embedding the 125 GeV Higgs boson measured at the LHC in an effective MSSM: Possible implications for neutralino dark matter, Phys. Rev. D 88 (2013) 023506 [arXiv:1304.5353] [INSPIRE].ADSGoogle Scholar
  44. [44]
    V.A. Mitsou, Shedding light on dark matter at colliders, Int. J. Mod. Phys. A 28 (2013) 1330052 [arXiv:1310.1072] [INSPIRE].ADSGoogle Scholar
  45. [45]
    A. Anandakrishnan and K. Sinha, On the viability of thermal well-tempered dark matter in SUSY GUTs, Phys. Rev. D 89 (2014) 055015 [arXiv:1310.7579] [INSPIRE].ADSGoogle Scholar
  46. [46]
    A. Arbey, M. Battaglia and F. Mahmoudi, Complementarity of WIMP sensitivity with direct SUSY, monojet and dark matter searches in the MSSM, Phys. Rev. D 89 (2014) 077701 [arXiv:1311.7641] [INSPIRE].ADSGoogle Scholar
  47. [47]
    D.A. Vásquez et al., Astrophysical limits on light NMSSM neutralinos, Phys. Rev. D 84 (2011) 095008 [arXiv:1107.1614] [INSPIRE].ADSGoogle Scholar
  48. [48]
    J.F. Gunion, Y. Jiang and S. Kraml, The constrained NMSSM and Higgs near 125 GeV, Phys. Lett. B 710 (2012) 454 [arXiv:1201.0982] [INSPIRE].ADSGoogle Scholar
  49. [49]
    J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP 03 (2012) 086 [arXiv:1202.5821] [INSPIRE].ADSGoogle Scholar
  50. [50]
    D.A. Vásquez et al., 125 GeV Higgs in the NMSSM in light of the LHC results and astrophysics constraints, Phys. Rev. D 86 (2012) 035023 [arXiv:1203.3446] [INSPIRE].ADSGoogle Scholar
  51. [51]
    G. Belanger et al., Light neutralino dark matter in the MSSM and its implication for LHC searches for staus, JHEP 12 (2012) 076 [arXiv:1206.5404] [INSPIRE].ADSGoogle Scholar
  52. [52]
    J. Cao, Z. Heng, J.M. Yang and J. Zhu, Status of low energy SUSY models confronted with the LHC 125 GeV Higgs data, JHEP 10 (2012) 079 [arXiv:1207.3698] [INSPIRE].ADSGoogle Scholar
  53. [53]
    K. Agashe, Y. Cui and R. Franceschini, Natural Islands for a 125 GeV Higgs in the scale-invariant NMSSM, JHEP 02 (2013) 031 [arXiv:1209.2115] [INSPIRE].ADSGoogle Scholar
  54. [54]
    BayesFITS Group collaboration, K. Kowalska et al., Constrained next-to-minimal supersymmetric standard model with a 126 GeV Higgs boson: a global analysis, Phys. Rev. D 87 (2013) 115010 [arXiv:1211.1693] [INSPIRE].ADSGoogle Scholar
  55. [55]
    J. Kozaczuk and S. Profumo, Light NMSSM neutralino dark matter in the wake of CDMS II and a 126 GeV Higgs, Phys. Rev. D 89 (2014) 095012 [arXiv:1308.5705] [INSPIRE].ADSGoogle Scholar
  56. [56]
    D.A. Vásquez et al., Can neutralinos in the MSSM and NMSSM scenarios still be light?, Phys. Rev. D 82 (2010) 115027 [arXiv:1009.4380] [INSPIRE].ADSGoogle Scholar
  57. [57]
    D.A. Vásquez et al., Revisiting light neutralino scenarios in the MSSM, Phys. Rev. D 84 (2011) 095015 [INSPIRE].ADSGoogle Scholar
  58. [58]
    U. Ellwanger and C. Hugonie, The semi-constrained NMSSM satisfying bounds from the LHC, LUX and Planck, arXiv:1405.6647 [INSPIRE].
  59. [59]
    A. Bottino, N. Fornengo and S. Scopel, Phenomenology of light neutralinos in view of recent results at the CERN Large Hadron Collider, Phys. Rev. D 85 (2012) 095013 [arXiv:1112.5666] [INSPIRE].ADSGoogle Scholar
  60. [60]
    G. Bélanger, S. Biswas, C. Boehm and B. Mukhopadhyaya, Light neutralino dark matter in the MSSM and its implication for LHC searches for staus, JHEP 12 (2012) 076 [arXiv:1206.5404] [INSPIRE].Google Scholar
  61. [61]
    L. Calibbi, J.M. Lindert, T. Ota and Y. Takanishi, Cornering light neutralino dark matter at the LHC, JHEP 10 (2013) 132 [arXiv:1307.4119] [INSPIRE].ADSGoogle Scholar
  62. [62]
    A. Choudhury and A. Datta, Many faces of low mass neutralino dark matter in the unconstrained MSSM, LHC data and new signals, JHEP 06 (2012) 006 [arXiv:1203.4106] [INSPIRE].ADSGoogle Scholar
  63. [63]
    A. Arbey, M. Battaglia, A. Djouadi and F. Mahmoudi, The Higgs sector of the phenomenological MSSM in the light of the Higgs boson discovery, JHEP 09 (2012) 107 [arXiv:1207.1348] [INSPIRE].ADSGoogle Scholar
  64. [64]
    M.W. Cahill-Rowley, J.L. Hewett, A. Ismail and T.G. Rizzo, More energy, more searches, but the phenomenological MSSM lives on, Phys. Rev. D 88 (2013) 035002 [arXiv:1211.1981] [INSPIRE].ADSGoogle Scholar
  65. [65]
    A. Arbey, M. Battaglia, A. Djouadi and F. Mahmoudi, An update on the constraints on the phenomenological MSSM from the new LHC Higgs results, Phys. Lett. B 720 (2013) 153 [arXiv:1211.4004] [INSPIRE].ADSGoogle Scholar
  66. [66]
    C. Boehm, P.S.B. Dev, A. Mazumdar and E. Pukartas, Naturalness of light neutralino dark matter in pMSSM after LHC, XENON100 and Planck data, JHEP 06 (2013) 113 [arXiv:1303.5386] [INSPIRE].ADSGoogle Scholar
  67. [67]
    M. Cahill-Rowley et al., Complementarity and searches for dark matter in the pMSSM, arXiv:1305.6921 [INSPIRE].
  68. [68]
    BayesFITS Group collaboration, A. Fowlie et al., Dark matter and collider signatures of the MSSM, Phys. Rev. D 88 (2013) 055012 [arXiv:1306.1567] [INSPIRE].ADSGoogle Scholar
  69. [69]
    M. Cahill-Rowley et al., Complementarity of Dark Matter Searches in the pMSSM, arXiv:1405.6716 [INSPIRE].
  70. [70]
    D. Albornoz Vasquez, G. Bélanger, R.M. Godbole and A. Pukhov, The Higgs boson in the MSSM in light of the LHC, Phys. Rev. D 85 (2012) 115013 [arXiv:1112.2200] [INSPIRE].ADSGoogle Scholar
  71. [71]
    M. Kadastik, K. Kannike, A. Racioppi and M. Raidal, Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology, JHEP 05 (2012) 061 [arXiv:1112.3647] [INSPIRE].ADSGoogle Scholar
  72. [72]
    J. Ellis and K.A. Olive, Revisiting the Higgs mass and dark matter in the CMSSM, Eur. Phys. J. C 72 (2012) 2005 [arXiv:1202.3262] [INSPIRE].ADSGoogle Scholar
  73. [73]
    H. Baer, V. Barger and A. Mustafayev, Neutralino dark matter in mSUGRA/CMSSM with a 125 GeV light Higgs scalar, JHEP 05 (2012) 091 [arXiv:1202.4038] [INSPIRE].ADSGoogle Scholar
  74. [74]
    A. Fowlie, M. Kazana, K. Kowalska, S. Munir, L. Roszkowski et al., The CMSSM favoring new territories: the impact of new LHC limits and a 125 GeV Higgs, Phys. Rev. D 86 (2012) 075010 [arXiv:1206.0264] [INSPIRE].ADSGoogle Scholar
  75. [75]
    S. Mohanty, S. Rao and D.P. Roy, Predictions of a natural SUSY dark matter model for direct and indirect detection experiments, JHEP 11 (2012) 175 [arXiv:1208.0894] [INSPIRE].ADSGoogle Scholar
  76. [76]
    W. Altmannshofer, M. Carena, N.R. Shah and F. Yu, Indirect probes of the MSSM after the Higgs discovery, JHEP 01 (2013) 160 [arXiv:1211.1976] [INSPIRE].ADSGoogle Scholar
  77. [77]
    C. Strege et al., Global Fits of the CMSSM and NUHM including the LHC Higgs discovery and new XENON100 constraints, JCAP 04 (2013) 013 [arXiv:1212.2636] [INSPIRE].ADSGoogle Scholar
  78. [78]
    H. Baer et al., Radiative natural supersymmetry: reconciling electroweak fine-tuning and the Higgs boson mass, Phys. Rev. D 87 (2013) 115028 [arXiv:1212.2655] [INSPIRE].ADSGoogle Scholar
  79. [79]
    S. Mohanty, S. Rao and D.P. Roy, Reconciling the muon g − 2 and dark matter relic density with the LHC results in nonuniversal gaugino mass models, JHEP 09 (2013) 027 [arXiv:1303.5830] [INSPIRE].ADSGoogle Scholar
  80. [80]
    P. Draper, J.L. Feng, P. Kant, S. Profumo and D. Sanford, Dark matter detection in focus point supersymmetry, Phys. Rev. D 88 (2013) 015025 [arXiv:1304.1159] [INSPIRE].ADSGoogle Scholar
  81. [81]
    A. Choudhury and A. Datta, Neutralino dark matter confronted by the LHC constraints on electroweak SUSY signals, JHEP 09 (2013) 119 [arXiv:1305.0928] [INSPIRE].ADSGoogle Scholar
  82. [82]
    A. Arbey, M. Battaglia and F. Mahmoudi, Supersymmetry with light dark matter confronting the recent CDMS and LHC results, Phys. Rev. D 88 (2013) 095001 [arXiv:1308.2153] [INSPIRE].ADSGoogle Scholar
  83. [83]
    M.E. Cabrera, A. Casas, R.R. de Austri and G. Bertone, LHC and dark matter phenomenology of the NUGHM, arXiv:1311.7152 [INSPIRE].
  84. [84]
    K. Kowalska, L. Roszkowski, E.M. Sessolo and S. Trojanowski, Low fine tuning in the MSSM with higgsino dark matter and unification constraints, JHEP 04 (2014) 166 [arXiv:1402.1328] [INSPIRE].ADSGoogle Scholar
  85. [85]
    R. Ding, L. Wang and B. Zhu, Neutralino dark matter in gauge mediation after Run I of LHC and LUX, Phys. Lett. B 733 (2014) 373 [arXiv:1403.3908] [INSPIRE].ADSGoogle Scholar
  86. [86]
    L. Roszkowski, E.M. Sessolo and A.J. Williams, What next for the CMSSM and the NUHM: improved prospects for superpartner and dark matter detection, arXiv:1405.4289 [INSPIRE].
  87. [87]
    L. Roszkowski, E.M. Sessolo and Y.-L.S. Tsai, Bayesian implications of current LHC supersymmetry and dark matter detection searches for the constrained MSSM, Phys. Rev. D 86 (2012) 095005 [arXiv:1202.1503] [INSPIRE].ADSGoogle Scholar
  88. [88]
    H. Baer, V. Barger, P. Huang and X. Tata, Natural supersymmetry: LHC, dark matter and ILC searches, JHEP 05 (2012) 109 [arXiv:1203.5539] [INSPIRE].ADSGoogle Scholar
  89. [89]
    T. Han, Z. Liu and A. Natarajan, Dark matter and Higgs bosons in the MSSM, JHEP 11 (2013) 008 [arXiv:1303.3040] [INSPIRE].ADSGoogle Scholar
  90. [90]
    A. Arbey, M. Battaglia and F. Mahmoudi, Light neutralino dark matter in the pMSSM: implications of LEP, LHC and dark matter searches on SUSY particle spectra, Eur. Phys. J. C 72 (2012) 2169 [arXiv:1205.2557] [INSPIRE].ADSGoogle Scholar
  91. [91]
    M.R. Buckley, D. Hooper and J. Kumar, Phenomenology of Dirac neutralino dark matter, Phys. Rev. D 88 (2013) 063532 [arXiv:1307.3561] [INSPIRE].ADSGoogle Scholar
  92. [92]
    G. Bélanger et al., LHC constraints on light neutralino dark matter in the MSSM, Phys. Lett. B 726 (2013) 773 [arXiv:1308.3735] [INSPIRE].ADSGoogle Scholar
  93. [93]
    A. Pierce, N.R. Shah and K. Freese, Neutralino dark matter with light staus, arXiv:1309.7351 [INSPIRE].
  94. [94]
    K. Hagiwara, S. Mukhopadhyay and J. Nakamura, 10 GeV neutralino dark matter and light stau in the MSSM, Phys. Rev. D 89 (2014) 015023 [arXiv:1308.6738] [INSPIRE].ADSGoogle Scholar
  95. [95]
    J. Cao, C. Han, L. Wu, P. Wu and J.M. Yang, A light SUSY dark matter after CDMS-II, LUX and LHC Higgs data, JHEP 05 (2014) 056 [arXiv:1311.0678] [INSPIRE].ADSGoogle Scholar
  96. [96]
    N.D. Christensen, T. Han, Z. Liu and S. Su, Low-mass Higgs bosons in the NMSSM and their LHC implications, JHEP 08 (2013) 019 [arXiv:1303.2113] [INSPIRE].ADSGoogle Scholar
  97. [97]
    U. Ellwanger, C. Hugonie and A.M. Teixeira, The next-to-minimal supersymmetric standard model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].ADSMathSciNetGoogle Scholar
  98. [98]
    R.D. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].ADSGoogle Scholar
  99. [99]
    R. Barbieri, L.J. Hall, A.Y. Papaioannou, D. Pappadopulo and V.S. Rychkov, An alternative NMSSM phenomenology with manifest perturbative unification, JHEP 03 (2008) 005 [arXiv:0712.2903] [INSPIRE].ADSGoogle Scholar
  100. [100]
    H. An, T. Liu and L.-T. Wang, 125 GeV Higgs boson, enhanced di-photon rate and gauged U(1)PQ -extended MSSM, Phys. Rev. D 86 (2012) 075030 [arXiv:1207.2473] [INSPIRE].ADSGoogle Scholar
  101. [101]
    D.J. Miller, R. Nevzorov and P.M. Zerwas, The Higgs sector of the next-to-minimal supersymmetric standard model, Nucl. Phys. B 681 (2004) 3 [hep-ph/0304049] [INSPIRE].ADSGoogle Scholar
  102. [102]
    R. Barbieri and G.F. Giudice, Upper bounds on supersymmetric particle masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].ADSGoogle Scholar
  103. [103]
    R. Kitano and Y. Nomura, Supersymmetry, naturalness and signatures at the LHC, Phys. Rev. D 73 (2006) 095004 [hep-ph/0602096] [INSPIRE].ADSGoogle Scholar
  104. [104]
    V. Barger, P. Langacker, H.-S. Lee and G. Shaughnessy, Higgs sector in extensions of the MSSM, Phys. Rev. D 73 (2006) 115010 [hep-ph/0603247] [INSPIRE].ADSGoogle Scholar
  105. [105]
    J.L. Feng, Naturalness and the status of supersymmetry, Ann. Rev. Nucl. Part. Sci. 63 (2013) 351 [arXiv:1302.6587] [INSPIRE].ADSGoogle Scholar
  106. [106]
    U. Ellwanger, J.F. Gunion and C. Hugonie, NMHDECAY: a Fortran code for the Higgs masses, couplings and decay widths in the NMSSM, JHEP 02 (2005) 066 [hep-ph/0406215] [INSPIRE].ADSGoogle Scholar
  107. [107]
    U. Ellwanger and C. Hugonie, NMHDECAY 2.0: an updated program for sparticle masses, Higgs masses, couplings and decay widths in the NMSSM, Comput. Phys. Commun. 175 (2006) 290 [hep-ph/0508022] [INSPIRE].ADSMATHGoogle Scholar
  108. [108]
    G. Bélanger, F. Boudjema, C. Hugonie, A. Pukhov and A. Semenov, Relic density of dark matter in the NMSSM, JCAP 09 (2005) 001 [hep-ph/0505142] [INSPIRE].Google Scholar
  109. [109]
    ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].ADSGoogle Scholar
  110. [110]
    G. Bélanger, B. Dumont, U. Ellwanger, J.F. Gunion and S. Kraml, Status of invisible Higgs decays, Phys. Lett. B 723 (2013) 340 [arXiv:1302.5694] [INSPIRE].ADSGoogle Scholar
  111. [111]
    ATLAS collaboration, Search for invisible decays of a Higgs boson produced in association with a Z boson in ATLAS, Phys. Rev. Lett. 112 (2014) 201802 [arXiv:1402.3244] [INSPIRE].ADSGoogle Scholar
  112. [112]
    CMS collaboration, Search for invisible decays of Higgs bosons in the vector boson fusion and associated ZH production modes, arXiv:1404.1344 [INSPIRE].
  113. [113]
    D. Curtin et al., Exotic decays of the 125 GeV Higgs boson, arXiv:1312.4992 [INSPIRE].
  114. [114]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  115. [115]
    ALEPH collaboration, A. Heister et al., Search for scalar quarks in e + e collisions at \( \sqrt{s} \) up to 209 GeV, Phys. Lett. B 537 (2002) 5 [hep-ex/0204036] [INSPIRE].ADSGoogle Scholar
  116. [116]
    A. Freitas, Two-loop fermionic electroweak corrections to the Z-boson width and production rate, Phys. Lett. B 730 (2014) 50 [arXiv:1310.2256] [INSPIRE].ADSGoogle Scholar
  117. [117]
    DELPHI collaboration, J. Abdallah et al., Searches for supersymmetric particles in e + e collisions up to 208 GeV and interpretation of the results within the MSSM, Eur. Phys. J. C 31 (2003) 421 [hep-ex/0311019] [INSPIRE].Google Scholar
  118. [118]
    ATLAS collaboration, Search for scalar bottom pair production with the ATLAS detector in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Rev. Lett. 108 (2012) 181802 [arXiv:1112.3832] [INSPIRE].ADSGoogle Scholar
  119. [119]
    ATLAS collaboration, Search for direct third-generation squark pair production in final states with missing transverse momentum and two b-jets in \( \sqrt{s} \) = 8 TeV pp collisions with the ATLAS detector, JHEP 10 (2013) 189 [arXiv:1308.2631] [INSPIRE].ADSGoogle Scholar
  120. [120]
    N.D. Christensen, T. Han and S. Su, MSSM Higgs bosons at The LHC, Phys. Rev. D 85 (2012) 115018 [arXiv:1203.3207] [INSPIRE].ADSGoogle Scholar
  121. [121]
    K. Hagiwara, J.S. Lee and J. Nakamura, Properties of 125 GeV Higgs boson in non-decoupling MSSM scenarios, JHEP 10 (2012) 002 [arXiv:1207.0802] [INSPIRE].ADSGoogle Scholar
  122. [122]
    J. Ke et al., What if bb does not dominate the decay of the Higgs-like boson?, arXiv:1212.6311 [INSPIRE].
  123. [123]
    T. Han, T. Li, S. Su and L.-T. Wang, Non-decoupling MSSM Higgs sector and light superpartners, JHEP 11 (2013) 053 [arXiv:1306.3229] [INSPIRE].ADSGoogle Scholar
  124. [124]
    M. Carena, T. Han, G.-Y. Huang and C.E.M. Wagner, Higgs signal for haa at hadron colliders, JHEP 04 (2008) 092 [arXiv:0712.2466] [INSPIRE].ADSGoogle Scholar
  125. [125]
    J. Ke et al., Revisit to non-decoupling MSSM, Phys. Lett. B 723 (2013) 113 [arXiv:1211.2427] [INSPIRE].ADSMathSciNetGoogle Scholar
  126. [126]
    J. Cao, F. Ding, C. Han, J.M. Yang and J. Zhu, A light Higgs scalar in the NMSSM confronted with the latest LHC Higgs data, JHEP 11 (2013) 018 [arXiv:1309.4939] [INSPIRE].ADSGoogle Scholar
  127. [127]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].ADSMATHGoogle Scholar
  128. [128]
    A. Chatterjee, M. Drees and S. Kulkarni, Radiative corrections to the neutralino dark matter relic densityAn effective coupling approach, Phys. Rev. D 86 (2012) 105025 [arXiv:1209.2328] [INSPIRE].ADSGoogle Scholar
  129. [129]
    K.R. Dienes and B. Thomas, Dynamical dark matter: I. Theoretical overview, Phys. Rev. D 85 (2012) 083523 [arXiv:1106.4546] [INSPIRE].ADSGoogle Scholar
  130. [130]
    K.R. Dienes and B. Thomas, Dynamical dark matter: II. An explicit model, Phys. Rev. D 85 (2012) 083524 [arXiv:1107.0721] [INSPIRE].ADSGoogle Scholar
  131. [131]
    M. Baldi, Multiple dark matter as a self-regulating mechanism for dark sector interactions, Annalen Phys. 524 (2012) 602 [arXiv:1204.0514] [INSPIRE].ADSMATHGoogle Scholar
  132. [132]
    M. Aoki, M. Duerr, J. Kubo and H. Takano, Multi-component dark matter systems and their observation prospects, Phys. Rev. D 86 (2012) 076015 [arXiv:1207.3318] [INSPIRE].ADSGoogle Scholar
  133. [133]
    D. Chialva, P.S.B. Dev and A. Mazumdar, Multiple dark matter scenarios from ubiquitous stringy throats, Phys. Rev. D 87 (2013) 063522 [arXiv:1211.0250] [INSPIRE].ADSGoogle Scholar
  134. [134]
    H. Baer, V. Barger and D. Mickelson, Direct and indirect detection of higgsino-like WIMPs: concluding the story of electroweak naturalness, Phys. Lett. B 726 (2013) 330 [arXiv:1303.3816] [INSPIRE].ADSGoogle Scholar
  135. [135]
    S. Bhattacharya, A. Drozd, B. Grzadkowski and J. Wudka, Two-component dark matter, JHEP 10 (2013) 158 [arXiv:1309.2986] [INSPIRE].ADSGoogle Scholar
  136. [136]
    K.J. Bae, H. Baer and E.J. Chun, Mixed axion/neutralino dark matter in the SUSY DFSZ axion model, JCAP 12 (2013) 028 [arXiv:1309.5365] [INSPIRE].ADSGoogle Scholar
  137. [137]
    J. Billard, L. Strigari and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev. D 89 (2014) 023524 [arXiv:1307.5458] [INSPIRE].ADSGoogle Scholar
  138. [138]
    P. Gondolo and S. Scopel, On the sbottom resonance in dark matter scattering, JCAP 10 (2013) 032 [arXiv:1307.4481] [INSPIRE].ADSGoogle Scholar
  139. [139]
    C. Cheung, L.J. Hall, D. Pinner and J.T. Ruderman, Prospects and blind spots for neutralino dark matter, JHEP 05 (2013) 100 [arXiv:1211.4873] [INSPIRE].ADSGoogle Scholar
  140. [140]
    P. Huang and C.E.M. Wagner, Blind spots for neutralino dark matter in the MSSM with an intermediate m A, Phys. Rev. D 90 (2014) 015018 [arXiv:1404.0392] [INSPIRE].ADSGoogle Scholar
  141. [141]
    G. Bélanger, F. Boudjema, A. Cottrant, R.M. Godbole and A. Semenov, The MSSM invisible Higgs in the light of dark matter and g − 2, Phys. Lett. B 519 (2001) 93 [hep-ph/0106275] [INSPIRE].ADSGoogle Scholar
  142. [142]
    D. Hooper, C. Kelso, P. Sandick and W. Xue, Closing supersymmetric resonance regions with direct detection experiments, Phys. Rev. D 88 (2013) 015010 [arXiv:1304.2417] [INSPIRE].ADSGoogle Scholar
  143. [143]
    P. Draper, T. Liu, C.E.M. Wagner, L.-T. Wang and H. Zhang, Dark light Higgs, Phys. Rev. Lett. 106 (2011) 121805 [arXiv:1009.3963] [INSPIRE].ADSGoogle Scholar
  144. [144]
    XENON100 collaboration, E. Aprile et al., Limits on spin-dependent WIMP-nucleon cross sections from 225 live days of XENON100 data, Phys. Rev. Lett. 111 (2013) 021301 [arXiv:1301.6620] [INSPIRE].ADSGoogle Scholar
  145. [145]
    IceCube collaboration, M.G. Aartsen et al., Search for dark matter annihilations in the Sun with the 79-string IceCube detector, Phys. Rev. Lett. 110 (2013) 131302 [arXiv:1212.4097] [INSPIRE].ADSGoogle Scholar
  146. [146]
    M.M. Boliev, S.V. Demidov, S.P. Mikheyev and O.V. Suvorova, Search for muon signal from dark matter annihilations inthe Sun with the Baksan Underground Scintillator Telescope for 24.12 years, JCAP 09 (2013) 019 [arXiv:1301.1138] [INSPIRE].ADSGoogle Scholar
  147. [147]
    A. Berlin, D. Hooper and S.D. McDermott, Simplified dark matter models for the galactic center gamma-ray excess, Phys. Rev. D 89 (2014) 115022 [arXiv:1404.0022] [INSPIRE].ADSGoogle Scholar
  148. [148]
    K.P. Modak, D. Majumdar and S. Rakshit, A possible explanation of low energy γ-ray excess from galactic centre and fermi bubble by a dark matter model with two real scalars, arXiv:1312.7488 [INSPIRE].
  149. [149]
    C. Boehm, M.J. Dolan, C. McCabe, M. Spannowsky and C.J. Wallace, Extended gamma-ray emission from Coy dark matter, JCAP 05 (2014) 009 [arXiv:1401.6458] [INSPIRE].ADSGoogle Scholar
  150. [150]
    P. Agrawal, B. Batell, D. Hooper and T. Lin, Flavored dark matter and the galactic center gamma-ray excess, arXiv:1404.1373 [INSPIRE].
  151. [151]
    E. Izaguirre, G. Krnjaic and B. Shuve, The galactic center excessl from the bottom up, arXiv:1404.2018 [INSPIRE].
  152. [152]
    S. Ipek, D. McKeen and A.E. Nelson, A renormalizable model for the galactic center gamma ray excess from dark matter annihilation, arXiv:1404.3716 [INSPIRE].
  153. [153]
    K. Kong and J.-C. Park, Bounds on dark matter interpretation of Fermi-LAT GeV excess, arXiv:1404.3741 [INSPIRE].
  154. [154]
    P. Ko, W.-I. Park and Y. Tang, Higgs portal vector dark matter for GeV scale γ-ray excess from galactic center, arXiv:1404.5257 [INSPIRE].
  155. [155]
    C. Boehm, M.J. Dolan and C. McCabe, A weighty interpretation of the galactic centre excess, Phys. Rev. D 90 (2014) 023531 [arXiv:1404.4977] [INSPIRE].ADSGoogle Scholar
  156. [156]
    M. Abdullah et al., Hidden on-shell mediators for the galactic center gamma-ray excess, arXiv:1404.6528 [INSPIRE].
  157. [157]
    D. Marzocca and A. Urbano, Composite dark matter and LHC interplay, JHEP 07 (2014) 107 [arXiv:1404.7419] [INSPIRE].Google Scholar
  158. [158]
    D.K. Ghosh, S. Mondal and I. Saha, Confronting the galactic center gamma ray excess with a light scalar dark matter, arXiv:1405.0206 [INSPIRE].
  159. [159]
    A. Martin, J. Shelton and J. Unwin, Fitting the galactic center gamma-ray excess with cascade annihilations, arXiv:1405.0272 [INSPIRE].
  160. [160]
    T. Basak and T. Mondal, Class of Higgs-portal dark matter models in the light of gamma-ray excess from galactic center, arXiv:1405.4877 [INSPIRE].
  161. [161]
    A. Berlin, P. Gratia, D. Hooper and S.D. McDermott, Hidden sector dark matter models for the galactic center gamma-ray excess, Phys. Rev. D 90 (2014) 015032 [arXiv:1405.5204] [INSPIRE].ADSGoogle Scholar
  162. [162]
    M. Carena, S. Gori, N.R. Shah, C.E.M. Wagner and L.-T. Wang, Light stau phenomenology and the Higgs γγ rate, JHEP 07 (2012) 175 [arXiv:1205.5842] [INSPIRE].ADSGoogle Scholar
  163. [163]
    S. Dawson et al., Working group report: Higgs boson, arXiv:1310.8361 [INSPIRE].
  164. [164]
    B.A. Dobrescu and J.D. Lykken, Coupling spans of the Higgs-like boson, JHEP 02 (2013) 073 [arXiv:1210.3342] [INSPIRE].ADSGoogle Scholar
  165. [165]
    D. Choudhury and D.P. Roy, Signatures of an invisibly decaying Higgs particle at LHC, Phys. Lett. B 322 (1994) 368 [hep-ph/9312347] [INSPIRE].ADSGoogle Scholar
  166. [166]
    O.J.P. Eboli and D. Zeppenfeld, Observing an invisible Higgs boson, Phys. Lett. B 495 (2000) 147 [hep-ph/0009158] [INSPIRE].ADSGoogle Scholar
  167. [167]
    H. Davoudiasl, T. Han and H.E. Logan, Discovering an invisibly decaying Higgs at hadron colliders, Phys. Rev. D 71 (2005) 115007 [hep-ph/0412269] [INSPIRE].ADSGoogle Scholar
  168. [168]
    J.R. Espinosa, M. Muhlleitner, C. Grojean and M. Trott, Probing for invisible Higgs decays with global fits, JHEP 09 (2012) 126 [arXiv:1205.6790] [INSPIRE].ADSGoogle Scholar
  169. [169]
    B. Coleppa, F. Kling and S. Su, Exotic decays of a heavy neutral Higgs through HZ/AZ channel, arXiv:1404.1922 [INSPIRE].
  170. [170]
    LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs cross sections: 1. Inclusive observables, arXiv:1101.0593 [INSPIRE].
  171. [171]
    J. Goodman et al., Constraints on light Majorana dark matter from colliders, Phys. Lett. B 695 (2011) 185 [arXiv:1005.1286] [INSPIRE].ADSGoogle Scholar
  172. [172]
    J. Goodman et al., Constraints on dark matter from colliders, Phys. Rev. D 82 (2010) 116010 [arXiv:1008.1783] [INSPIRE].ADSGoogle Scholar
  173. [173]
    A. Rajaraman, W. Shepherd, T.M.P. Tait and A.M. Wijangco, LHC bounds on interactions of dark matter, Phys. Rev. D 84 (2011) 095013 [arXiv:1108.1196] [INSPIRE].ADSGoogle Scholar
  174. [174]
    G. Busoni, A. De Simone, J. Gramling, E. Morgante and A. Riotto, On the validity of the effective field theory for dark matter searches at the LHC. Part II: complete analysis for the s-channel, JCAP 06 (2014) 060 [arXiv:1402.1275] [INSPIRE].ADSGoogle Scholar
  175. [175]
    CMS collaboration, Search for supersymmetry in final states with missing transverse energy and 0, 1, 2, or at least 3 b-quark jets in 7 TeV pp collisions using the variable α T, JHEP 01 (2013) 077 [arXiv:1210.8115] [INSPIRE].ADSGoogle Scholar
  176. [176]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSGoogle Scholar
  177. [177]
    G.R. Farrar and P. Fayet, Phenomenology of the production, decay and detection of new hadronic states associated with supersymmetry, Phys. Lett. B 76 (1978) 575 [INSPIRE].ADSGoogle Scholar
  178. [178]
    CMS Collaboration, Search for long-lived neutral particles decaying to dijets, CMS-PAS-EXO-12-038 (2012).
  179. [179]
    Z. Liu and B. Tweedie, New LHC constraints on displaced superparticles, to appear.Google Scholar
  180. [180]
    B. Batell, C.E.M. Wagner and L.-T. Wang, Constraints on a very light sbottom, JHEP 05 (2014) 002 [arXiv:1312.2590] [INSPIRE].ADSGoogle Scholar
  181. [181]
    I. Antoniadis, S. Dimopoulos, A. Pomarol and M. Quirós, Soft masses in theories with supersymmetry breaking by TeV compactification, Nucl. Phys. B 544 (1999) 503 [hep-ph/9810410] [INSPIRE].ADSGoogle Scholar
  182. [182]
    DELPHI collaboration, P. Abreu et al., A search for heavy stable and longlived squarks and sleptons in e + e collisions at energies from 130 GeV to 183 GeV, Phys. Lett. B 444 (1998) 491 [hep-ex/9811007] [INSPIRE].
  183. [183]
    OPAL collaboration, G. Abbiendi et al., Search for stable and longlived massive charged particles in e + e collisions at \( \sqrt{s} \) = 130 GeV to 209 GeV, Phys. Lett. B 572 (2003) 8 [hep-ex/0305031] [INSPIRE].ADSGoogle Scholar
  184. [184]
    M. Fairbairn et al., Stable massive particles at colliders, Phys. Rept. 438 (2007) 1 [hep-ph/0611040] [INSPIRE].ADSGoogle Scholar
  185. [185]
    ATLAS collaboration, Search for electroweak production of supersymmetric particles in final states with at least two hadronically decaying taus and missing transverse momentum with the ATLAS detector in proton-proton collisions at \( \sqrt{s} \) = 8 TeV, ATLAS-CONF-2013-028 (2013).
  186. [186]
    ATLAS collaboration, Search for direct-slepton and direct-chargino production in final states with two opposite-sign leptons, missing transverse momentum and no jets in 20 fb −1 of pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2013-049 (2013).
  187. [187]
    R.L. Arnowitt, B. Dutta, T. Kamon, N. Kolev and D.A. Toback, Detection of SUSY in the stau-neutralino coannihilation region at the LHC, Phys. Lett. B 639 (2006) 46 [hep-ph/0603128] [INSPIRE].ADSGoogle Scholar
  188. [188]
    T. Jittoh, J. Sato, T. Shimomura and M. Yamanaka, Long life stau in the minimal supersymmetric standard model, Phys. Rev. D 73 (2006) 055009 [Erratum ibid. D 87 (2013) 019901] [hep-ph/0512197] [INSPIRE].
  189. [189]
    N.D. Christensen, T. Han, J. Song and Stefanus, Determining the dark matter particle mass through antler topology processes at lepton colliders, arXiv:1404.6258 [INSPIRE].

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Pittsburgh Particle physics, Astrophysics, and Cosmology Center, Department of Physics and AstronomyUniversity of PittsburghPittsburghU.S.A.
  2. 2.Department of PhysicsUniversity of ArizonaTucsonU.S.A.

Personalised recommendations