Advertisement

Two-loop QCD corrections to Higgs → b + \( \overline{b} \) + g amplitude

  • Taushif Ahmed
  • Maguni Mahakhud
  • Prakash Mathews
  • Narayan RanaEmail author
  • V. Ravindran
Open Access
Article

Abstract

Exclusive observables involving Higgs boson in association with jets are often well suited to study the Higgs boson properties. They are rates involving cuts on the final state jets or differential distributions of rapidity, transverse momentum of the observed Higgs boson. While they get dominant contributions from gluon initiated partonic subprocesses, it is important to include the subdominant ones coming from other channels. In this article, we study one such channel namely the Higgs production in association with a jet in bottom anti-bottom annihilation process. We compute relevant amplitude Hb+\( \overline{b} \)+g up to two loop level in QCD where Higgs couples to bottom quark through Yukawa coupling. We use projection operators to obtain the coefficients for each tensorial structure appearing in this process. We have demonstrated that the renormalized amplitudes do have the right infrared structure predicted by the QCD factorization in dimensional regularization. The finite parts of the one and two loop amplitudes are presented after subtracting the infrared poles using Catani’s subtraction operators.

Keywords

QCD Phenomenology NLO Computations 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Combination of Higgs boson searches with up to 4.9 fb−1 of pp collisions data taken at a center-of-mass energy of 7 TeV with the ATLAS experiment at the LHC, ATLAS-CONF-2011-163, CERN, Geneva Switzerland (2011).
  2. [2]
    CMS collaboration, Combination of SM Higgs searches, CMS-PAS-HIG-11-032, CERN, Geneva Switzerland (2011).
  3. [3]
    LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3 and OPAL collaboration, R. Barate et al., Search for the Standard Model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [INSPIRE].ADSGoogle Scholar
  4. [4]
    CDF and D0 collaborations, T. Aaltonen et al., Combination of Tevatron searches for the Standard Model Higgs boson in the W + W decay mode, Phys. Rev. Lett. 104 (2010) 061802 [arXiv:1001.4162] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    ALEPH, CDF, D0, DELPHI, L3, OPAL and SLD collaborations, Precision electroweak measurements and constraints on the Standard Model, CERN-PH-EP-2010-095, CERN, Geneva Switzerland (2010).
  6. [6]
    S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A. Djouadi, M. Spira and P.M. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    R.V. Harlander and W.B. Kilgore, Soft and virtual corrections to ppH + x at NNLO, Phys. Rev. D 64 (2001) 013015 [hep-ph/0102241] [INSPIRE].ADSGoogle Scholar
  10. [10]
    S. Catani, D. de Florian and M. Grazzini, Higgs production in hadron collisions: soft and virtual QCD corrections at NNLO, JHEP 05 (2001) 025 [hep-ph/0102227] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S. Catani, D. de Florian, M. Grazzini and P. Nason, Soft gluon resummation for Higgs boson production at hadron colliders, JHEP 07 (2003) 028 [hep-ph/0306211] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the total cross-section for Higgs boson production in hadron hadron collisions, Nucl. Phys. B 665 (2003) 325 [hep-ph/0302135] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    P. Bolzoni, F. Maltoni, S.-O. Moch and M. Zaro, Higgs production via vector-boson fusion at NNLO in QCD, Phys. Rev. Lett. 105 (2010) 011801 [arXiv:1003.4451] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    T. Han and S. Willenbrock, QCD correction to the ppW H and ZH total cross-sections, Phys. Lett. B 273 (1991) 167 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    O. Brein, A. Djouadi and R. Harlander, NNLO QCD corrections to the Higgs-strahlung processes at hadron colliders, Phys. Lett. B 579 (2004) 149 [hep-ph/0307206] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    D.A. Dicus and S. Willenbrock, Higgs boson production from heavy quark fusion, Phys. Rev. D 39 (1989) 751 [INSPIRE].ADSGoogle Scholar
  19. [19]
    D. Dicus, T. Stelzer, Z. Sullivan and S. Willenbrock, Higgs boson production in association with bottom quarks at next-to-leading order, Phys. Rev. D 59 (1999) 094016 [hep-ph/9811492] [INSPIRE].ADSGoogle Scholar
  20. [20]
    F. Maltoni, Z. Sullivan and S. Willenbrock, Higgs-boson production via bottom-quark fusion, Phys. Rev. D 67 (2003) 093005 [hep-ph/0301033] [INSPIRE].ADSGoogle Scholar
  21. [21]
    F.I. Olness and W.-K. Tung, When is a heavy quark not a parton? Charged Higgs production and heavy quark mass effects in the QCD based parton model, Nucl. Phys. B 308 (1988) 813 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J.F. Gunion, H.E. Haber, F.E. Paige, W.-K. Tung and S.S.D. Willenbrock, Neutral and charged Higgs detection: heavy quark fusion, top quark mass dependence and rare decays, Nucl. Phys. B 294 (1987) 621 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    R.V. Harlander and W.B. Kilgore, Higgs boson production in bottom quark fusion at next-to-next-to leading order, Phys. Rev. D 68 (2003) 013001 [hep-ph/0304035] [INSPIRE].ADSGoogle Scholar
  24. [24]
    L. Reina and S. Dawson, Next-to-leading order results for \( t\overline{t} h \) production at the Tevatron, Phys. Rev. Lett. 87 (2001) 201804 [hep-ph/0107101] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    W. Beenakker et al., Higgs radiation off top quarks at the Tevatron and the LHC, Phys. Rev. Lett. 87 (2001) 201805 [hep-ph/0107081] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    S. Dawson, L.H. Orr, L. Reina and D. Wackeroth, Associated top quark Higgs boson production at the LHC, Phys. Rev. D 67 (2003) 071503 [hep-ph/0211438] [INSPIRE].ADSGoogle Scholar
  27. [27]
    W. Beenakker et al., NLO QCD corrections to \( t\overline{t} H \) production in hadron collisions, Nucl. Phys. B 653 (2003) 151 [hep-ph/0211352] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    R. Raitio and W.W. Wada, Higgs boson production at large transverse momentum in QCD, Phys. Rev. D 19 (1979) 941 [INSPIRE].ADSGoogle Scholar
  29. [29]
    Z. Kunszt, Associated production of heavy Higgs boson with top quarks, Nucl. Phys. B 247 (1984) 339 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    C. Anastasiou, K. Melnikov and F. Petriello, Fully differential Higgs boson production and the di-photon signal through next-to-next-to-leading order, Nucl. Phys. B 724 (2005) 197 [hep-ph/0501130] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    C. Anastasiou, G. Dissertori and F. Stöckli, NNLO QCD predictions for the HWWℓνℓν signal at the LHC, JHEP 09 (2007) 018 [arXiv:0707.2373] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    M. Grazzini, NNLO predictions for the Higgs boson signal in the HW Wℓνℓν and HZZ → 4ℓ decay channels, JHEP 02 (2008) 043 [arXiv:0801.3232] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    R. Boughezal, F. Caola, K. Melnikov, F. Petriello and M. Schulze, Higgs boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, JHEP 06 (2013) 072 [arXiv:1302.6216] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    V. Del Duca, A. Frizzo and F. Maltoni, Higgs boson production in association with three jets, JHEP 05 (2004) 064 [hep-ph/0404013] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    L.J. Dixon, E.W.N. Glover and V.V. Khoze, MHV rules for Higgs plus multi-gluon amplitudes, JHEP 12 (2004) 015 [hep-th/0411092] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  36. [36]
    S. Badger, E.W. Nigel Glover, P. Mastrolia and C. Williams, One-loop Higgs plus four gluon amplitudes: full analytic results, JHEP 01 (2010) 036 [arXiv:0909.4475] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    T. Gehrmann, M. Jaquier, E.W.N. Glover and A. Koukoutsakis, Two-loop QCD corrections to the helicity amplitudes for H → 3 partons, JHEP 02 (2012) 056 [arXiv:1112.3554] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    T. Gehrmann and E. Remiddi, Two loop master integrals for γ → 3 jets: the planar topologies, Nucl. Phys. B 601 (2001) 248 [hep-ph/0008287] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    T. Gehrmann and E. Remiddi, Two loop master integrals for γ → 3 jets: the nonplanar topologies, Nucl. Phys. B 601 (2001) 287 [hep-ph/0101124] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    T. Binoth and G. Heinrich, An automatized algorithm to compute infrared divergent multiloop integrals, Nucl. Phys. B 585 (2000) 741 [hep-ph/0004013] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  41. [41]
    T. Binoth and G. Heinrich, Numerical evaluation of phase space integrals by sector decomposition, Nucl. Phys. B 693 (2004) 134 [hep-ph/0402265] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    C. Anastasiou, K. Melnikov and F. Petriello, A new method for real radiation at NNLO, Phys. Rev. D 69 (2004) 076010 [hep-ph/0311311] [INSPIRE].ADSGoogle Scholar
  43. [43]
    G. Heinrich, Sector decomposition, Int. J. Mod. Phys. A 23 (2008) 1457 [arXiv:0803.4177] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  44. [44]
    J. Carter and G. Heinrich, SecDec: a general program for sector decomposition, Comput. Phys. Commun. 182 (2011) 1566 [arXiv:1011.5493] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  45. [45]
    C. Anastasiou, F. Herzog and A. Lazopoulos, On the factorization of overlapping singularities at NNLO, JHEP 03 (2011) 038 [arXiv:1011.4867] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    C. Anastasiou, F. Herzog and A. Lazopoulos, The fully differential decay rate of a Higgs boson to bottom-quarks at NNLO in QCD, JHEP 03 (2012) 035 [arXiv:1110.2368] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Antenna subtraction at NNLO, JHEP 09 (2005) 056 [hep-ph/0505111] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, Infrared structure of e + e → 3 jets at NNLO, JHEP 11 (2007) 058 [arXiv:0710.0346] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    A. Daleo, T. Gehrmann and D. Maître, Antenna subtraction with hadronic initial states, JHEP 04 (2007) 016 [hep-ph/0612257] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    A. Daleo, A. Gehrmann-De Ridder, T. Gehrmann and G. Luisoni, Antenna subtraction at NNLO with hadronic initial states: initial-final configurations, JHEP 01 (2010) 118 [arXiv:0912.0374] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    R. Boughezal, A. Gehrmann-De Ridder and M. Ritzmann, Antenna subtraction at NNLO with hadronic initial states: double real radiation for initial-initial configurations with two quark flavours, JHEP 02 (2011) 098 [arXiv:1011.6631] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    T. Gehrmann and P.F. Monni, Antenna subtraction at NNLO with hadronic initial states: real-virtual initial-initial configurations, JHEP 12 (2011) 049 [arXiv:1107.4037] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    E.W. Nigel Glover and J. Pires, Antenna subtraction for gluon scattering at NNLO, JHEP 06 (2010) 096 [arXiv:1003.2824] [INSPIRE].CrossRefGoogle Scholar
  55. [55]
    S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    P. Bärnreuther, M. Czakon and A. Mitov, Percent level precision physics at the Tevatron: first genuine NNLO QCD corrections to \( q\overline{q} \)\( t\overline{t} \) + X, Phys. Rev. Lett. 109 (2012) 132001 [arXiv:1204.5201] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    M. Czakon and A. Mitov, NNLO corrections to top-pair production at hadron colliders: the all-fermionic scattering channels, JHEP 12 (2012) 054 [arXiv:1207.0236] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    M. Czakon and A. Mitov, NNLO corrections to top pair production at hadron colliders: the quark-gluon reaction, JHEP 01 (2013) 080 [arXiv:1210.6832] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    R. Boughezal, K. Melnikov and F. Petriello, A subtraction scheme for NNLO computations, Phys. Rev. D 85 (2012) 034025 [arXiv:1111.7041] [INSPIRE].ADSGoogle Scholar
  60. [60]
    E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  61. [61]
    T. Kinoshita, Mass singularities of Feynman amplitudes, J. Math. Phys. 3 (1962) 650 [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  62. [62]
    T.D. Lee and M. Nauenberg, Degenerate systems and mass singularities, Phys. Rev. 133 (1964) B1549 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  63. [63]
    S. Catani, The singular behavior of QCD amplitudes at two loop order, Phys. Lett. B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    G.F. Sterman and M.E. Tejeda-Yeomans, Multiloop amplitudes and resummation, Phys. Lett. B 552 (2003) 48 [hep-ph/0210130] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    S.M. Aybat, L.J. Dixon and G.F. Sterman, The two-loop anomalous dimension matrix for soft gluon exchange, Phys. Rev. Lett. 97 (2006) 072001 [hep-ph/0606254] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    S.M. Aybat, L.J. Dixon and G.F. Sterman, The two-loop soft anomalous dimension matrix and resummation at next-to-next-to leading pole, Phys. Rev. D 74 (2006) 074004 [hep-ph/0607309] [INSPIRE].ADSGoogle Scholar
  67. [67]
    V. Ravindran, J. Smith and W.L. van Neerven, Two-loop corrections to Higgs boson production, Nucl. Phys. B 704 (2005) 332 [hep-ph/0408315] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett. 102 (2009) 162001 [Erratum ibid. 111 (2013) 199905] [arXiv:0901.0722] [INSPIRE].
  69. [69]
    E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes, JHEP 03 (2009) 079 [arXiv:0901.1091] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
  71. [71]
    J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
  72. [72]
    J.A.M. Vermaseren, The FORM project, Nucl. Phys. Proc. Suppl. 183 (2008) 19 [arXiv:0806.4080] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
  74. [74]
    R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser. 523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    F.V. Tkachov, A theorem on analytical calculability of four loop renormalization group functions, Phys. Lett. B 100 (1981) 65 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  76. [76]
    K.G. Chetyrkin and F.V. Tkachov, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  78. [78]
    T. Ahmed, M. Mahakhud, P. Mathews, N. Rana and V. Ravindran, Two-loop QCD correction to massive spin-2 resonance → 3 gluons, JHEP 05 (2014) 107 [arXiv:1404.0028] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    T. Gehrmann and E. Remiddi, Analytic continuation of massless two loop four point functions, Nucl. Phys. B 640 (2002) 379 [hep-ph/0207020] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Taushif Ahmed
    • 1
  • Maguni Mahakhud
    • 1
  • Prakash Mathews
    • 2
  • Narayan Rana
    • 1
    Email author
  • V. Ravindran
    • 3
  1. 1.Regional Centre for Accelerator-based Particle PhysicsHarish-Chandra Research InstituteAllahabadIndia
  2. 2.Saha Institute of Nuclear PhysicsKolkataIndia
  3. 3.The Institute of Mathematical Sciences, C.I.T CampusChennaiIndia

Personalised recommendations