Advertisement

Constraining sterile neutrinos using reactor neutrino experiments

  • Ivan Girardi
  • Davide Melon
  • Tommy Ohlsson
  • He Zhang
  • Shun Zhou
Open Access
Article

Abstract

Models of neutrino mixing involving one or more sterile neutrinos have resurrected their importance in the light of recent cosmological data. In this case, reactor antineutrino experiments offer an ideal place to look for signatures of sterile neutrinos due to their impact on neutrino flavor transitions. In this work, we show that the high-precision data of the Daya Bay experiment constrain the 3+1 neutrino scenario imposing upper bounds on the relevant active-sterile mixing angle sin2 2θ 14 ≲ 0.06 at 3σ confidence level for the mass-squared difference Δm 41 2 in the range (10−3, 10−1) eV2. The latter bound can be improved by six years of running of the JUNO experiment, sin2 2θ 14 ≲ 0.016, although in the smaller mass range Δm 41 2 ∈ (10−4, 10−3) eV2. We have also investigated the impact of sterile neutrinos on precision measurements of the standard neutrino oscillation parameters θ 13 and Δm 31 2 (at Daya Bay and JUNO), θ 12 and Δm 21 2 (at JUNO), and most importantly, the neutrino mass hierarchy (at JUNO). We find that, except for the obvious situation where Δm 41 2  ≲ Δm 31 2 , sterile states do not affect these measurements substantially.

Keywords

Neutrino Physics Beyond Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    LSND collaboration, A. Aguilar-Arevalo et al., Evidence for neutrino oscillations from the observation of anti-neutrino(electron) appearance in a anti-neutrino(muon) beam, Phys. Rev. D 64 (2001) 112007 [hep-ex/0104049] [INSPIRE].ADSGoogle Scholar
  2. [2]
    MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., Unexplained excess of electron-like events from a 1 GeV neutrino beam, Phys. Rev. Lett. 102 (2009) 101802 [arXiv:0812.2243] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., Event excess in the MiniBooNE search for \( {\overline{\nu}}_{\mu}\to {\overline{\nu}}_e \) oscillations, Phys. Rev. Lett. 105 (2010) 181801 [arXiv:1007.1150] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    C. Giunti and M. Laveder, Short-baseline active-sterile neutrino oscillations?, Mod. Phys. Lett. A 22 (2007) 2499 [hep-ph/0610352] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    C. Giunti and M. Laveder, Statistical significance of the gallium anomaly, Phys. Rev. C 83 (2011) 065504 [arXiv:1006.3244] [INSPIRE].ADSGoogle Scholar
  6. [6]
    C. Giunti, M. Laveder, Y.F. Li, Q.Y. Liu and H.W. Long, Update of short-baseline electron neutrino and antineutrino disappearance, Phys. Rev. D 86 (2012) 113014 [arXiv:1210.5715] [INSPIRE].ADSGoogle Scholar
  7. [7]
    G. Mention et al., The reactor antineutrino anomaly, Phys. Rev. D 83 (2011) 073006 [arXiv:1101.2755] [INSPIRE].ADSGoogle Scholar
  8. [8]
    J. Kopp, P.A.N. Machado, M. Maltoni and T. Schwetz, Sterile neutrino oscillations: the global picture, JHEP 05 (2013) 050 [arXiv:1303.3011] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    KARMEN collaboration, B. Armbruster et al., Upper limits for neutrino oscillations \( {\overline{\nu}}_{\mu}\to {\overline{\nu}}_e \) from muon decay at rest, Phys. Rev. D 65 (2002) 112001 [hep-ex/0203021] [INSPIRE].ADSGoogle Scholar
  10. [10]
    NOMAD collaboration, P. Astier et al., Search for ν μ → ν e oscillations in the NOMAD experiment, Phys. Lett. B 570 (2003) 19 [hep-ex/0306037] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    BICEP2 collaboration, P.A.R. Ade et al., Detection of B-mode polarization at degree angular scales by BICEP2, Phys. Rev. Lett. 112 (2014) 241101 [arXiv:1403.3985] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    E. Giusarma, E. Di Valentino, M. Lattanzi, A. Melchiorri and O. Mena, Relic neutrinos, thermal axions and cosmology in early 2014, arXiv:1403.4852 [INSPIRE].
  13. [13]
    A. Kusenko, F. Takahashi and T.T. Yanagida, Dark matter from split seesaw, Phys. Lett. B 693 (2010) 144 [arXiv:1006.1731] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Adulpravitchai and R. Takahashi, A 4 flavor models in split seesaw mechanism, JHEP 09 (2011) 127 [arXiv:1107.3829] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Shaposhnikov, A possible symmetry of the νMSM, Nucl. Phys. B 763 (2007) 49 [hep-ph/0605047] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    M. Lindner, A. Merle and V. Niro, Soft L e -L μ -L τ flavour symmetry breaking and sterile neutrino keV dark matter, JCAP 01 (2011) 034 [Erratum ibid. 07 (2014) E01] [arXiv:1011.4950] [INSPIRE].
  17. [17]
    R.N. Mohapatra, S. Nasri and H.-B. Yu, Seesaw right handed neutrino as the sterile neutrino for LSND, Phys. Rev. D 72 (2005) 033007 [hep-ph/0505021] [INSPIRE].ADSGoogle Scholar
  18. [18]
    C.D. Froggatt and H.B. Nielsen, Hierarchy of quark masses, Cabibbo angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    J. Barry, W. Rodejohann and H. Zhang, Sterile neutrinos for warm dark matter and the reactor anomaly in flavor symmetry models, JCAP 01 (2012) 052 [arXiv:1110.6382] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    A. Merle and V. Niro, Deriving models for keV sterile neutrino dark matter with the Froggatt-Nielsen mechanism, JCAP 07 (2011) 023 [arXiv:1105.5136] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J. Barry, W. Rodejohann and H. Zhang, Light sterile neutrinos: models and phenomenology, JHEP 07 (2011) 091 [arXiv:1105.3911] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    H. Zhang, Light sterile neutrino in the minimal extended seesaw, Phys. Lett. B 714 (2012) 262 [arXiv:1110.6838] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J. Heeck and H. Zhang, Exotic charges, multicomponent dark matter and light sterile neutrinos, JHEP 05 (2013) 164 [arXiv:1211.0538] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    P.S. Bhupal Dev and A. Pilaftsis, Light and superlight sterile neutrinos in the minimal radiative inverse seesaw model, Phys. Rev. D 87 (2013) 053007 [arXiv:1212.3808] [INSPIRE].ADSGoogle Scholar
  25. [25]
    DAYA-BAY collaboration, F.P. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    T. Ohlsson and H. Zhang, Non-standard interaction effects at reactor neutrino experiments, Phys. Lett. B 671 (2009) 99 [arXiv:0809.4835] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    R. Leitner, M. Malinský, B. Roskovec and H. Zhang, Non-standard antineutrino interactions at Daya Bay, JHEP 12 (2011) 001 [arXiv:1105.5580] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    R. Adhikari, S. Chakraborty, A. Dasgupta and S. Roy, Non-standard interaction in neutrino oscillations and recent Daya Bay, T2K experiments, Phys. Rev. D 86 (2012) 073010 [arXiv:1201.3047] [INSPIRE].ADSGoogle Scholar
  29. [29]
    A.N. Khan, D.W. McKay and F. Tahir, Sensitivity of medium-baseline reactor neutrino mass-hierarchy experiments to non-standard interactions, Phys. Rev. D 88 (2013) 113006 [arXiv:1305.4350] [INSPIRE].ADSGoogle Scholar
  30. [30]
    I. Girardi and D. Meloni, Constraining new physics scenarios in neutrino oscillations from Daya Bay data, arXiv:1403.5507 [INSPIRE].
  31. [31]
    P. Bakhti and Y. Farzan, Shedding light on LMA-dark solar neutrino solution by medium baseline reactor experiments: JUNO and RENO-50, JHEP 07 (2014) 064 [arXiv:1403.0744] [INSPIRE].CrossRefGoogle Scholar
  32. [32]
    A. Palazzo, Constraints on very light sterile neutrinos from θ 13 -sensitive reactor experiments, JHEP 10 (2013) 172 [arXiv:1308.5880] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    P. Bakhti and Y. Farzan, Constraining super-light sterile neutrino scenario by JUNO and RENO-50, JHEP 10 (2013) 200 [arXiv:1308.2823] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    A. Esmaili, E. Kemp, O.L.G. Peres and Z. Tabrizi, Probing light sterile neutrinos in medium baseline reactor experiments, Phys. Rev. D 88 (2013) 073012 [arXiv:1308.6218] [INSPIRE].ADSGoogle Scholar
  35. [35]
    Daya Bay collaboration, F.P. An et al., Improved measurement of electron antineutrino disappearance at Daya Bay, Chin. Phys. C 37 (2013) 011001 [arXiv:1210.6327] [INSPIRE].CrossRefGoogle Scholar
  36. [36]
    T. Mueller et al., Improved predictions of reactor antineutrino spectra, Phys. Rev. C 83 (2011) 054615 [arXiv:1101.2663] [INSPIRE].ADSGoogle Scholar
  37. [37]
    P. Huber, On the determination of anti-neutrino spectra from nuclear reactors, Phys. Rev. C 84 (2011) 024617 [Erratum ibid. C 85 (2012) 029901] [arXiv:1106.0687] [INSPIRE].
  38. [38]
    Daya Bay collaboration, F.P. An et al., Spectral measurement of electron antineutrino oscillation amplitude and frequency at Daya Bay, Phys. Rev. Lett. 112 (2014) 061801 [arXiv:1310.6732] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    P. Vogel and J.F. Beacom, Angular distribution of neutron inverse beta decay, \( {\overline{\nu}}_e \) + p → e + + n, Phys. Rev. D 60 (1999) 053003 [hep-ph/9903554] [INSPIRE].ADSGoogle Scholar
  40. [40]
    P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: general long baseline experiment simulator, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    P. Huber, M. Lindner, T. Schwetz and W. Winter, Reactor neutrino experiments compared to superbeams, Nucl. Phys. B 665 (2003) 487 [hep-ph/0303232] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator), Comput. Phys. Commun. 167 (2005) 195 [hep-ph/0407333] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A.M. Rotunno, Evidence of θ 13 > 0 from global neutrino data analysis, Phys. Rev. D 84 (2011) 053007 [arXiv:1106.6028] [INSPIRE].ADSGoogle Scholar
  44. [44]
    Y.-F. Li, J. Cao, Y. Wang and L. Zhan, Unambiguous determination of the neutrino mass hierarchy using reactor neutrinos, Phys. Rev. D 88 (2013) 013008 [arXiv:1303.6733] [INSPIRE].ADSGoogle Scholar
  45. [45]
    T. Ohlsson, H. Zhang and S. Zhou, Non-standard interaction effects on neutrino parameters at medium-baseline reactor antineutrino experiments, Phys. Lett. B 728 (2014) 148 [arXiv:1310.5917] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    F. Capozzi et al., Status of three-neutrino oscillation parameters, circa 2013, Phys. Rev. D 89 (2014) 093018 [arXiv:1312.2878] [INSPIRE].ADSGoogle Scholar
  47. [47]
    Y. Wang, Daya Bay II, talk given at 15th International Workshop on Neutrino Telescopes, Venice Italy (2013) [PoS(NeuTel 2013)030].
  48. [48]
    P.C. de Holanda and A.Y. Smirnov, Homestake result, sterile neutrinos and low-energy solar neutrino experiments, Phys. Rev. D 69 (2004) 113002 [hep-ph/0307266] [INSPIRE].ADSGoogle Scholar
  49. [49]
    P.C. de Holanda and A.Y. Smirnov, Solar neutrino spectrum, sterile neutrinos and additional radiation in the universe, Phys. Rev. D 83 (2011) 113011 [arXiv:1012.5627] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Ivan Girardi
    • 1
  • Davide Melon
    • 2
  • Tommy Ohlsson
    • 3
  • He Zhang
    • 4
  • Shun Zhou
    • 3
  1. 1.SISSA/INFNTriesteItaly
  2. 2.Dipartimento di Matematica e FisicaUniversità di Roma TreRomeItaly
  3. 3.Department of Theoretical Physics, School of Engineering Sciences, KTH Royal Institute of TechnologyAlbaNova University CenterStockholmSweden
  4. 4.Max-Planck-Institut für KernphysikHeidelbergGermany

Personalised recommendations