Journal of High Energy Physics

, 2014:51

Holographic thermalization with Lifshitz scaling and hyperscaling violation

  • Piermarco Fonda
  • Lasse Franti
  • Ville Keränen
  • Esko Keski-Vakkuri
  • Larus Thorlacius
  • Erik Tonni
Open Access
Article

Abstract

A Vaidya type geometry describing gravitation collapse in asymptotically Lifshitz spacetime with hyperscaling violation provides a simple holographic model for thermalization near a quantum critical point with non-trivial dynamic and hyperscaling violation exponents. The allowed parameter regions are constrained by requiring that the matter energy momentum tensor satisfies the null energy condition. We present a combination of analytic and numerical results on the time evolution of holographic entanglement entropy in such backgrounds for different shaped boundary regions and study various scaling regimes, generalizing previous work by Liu and Suh.

Keywords

Gauge-gravity correspondence AdS-CFT Correspondence Black Holes 

References

  1. [1]
    E.H. Lieb and D.W. Robinson, The finite group velocity of quantum spin systems, Commun. Math. Phys. 28 (1972) 251 [INSPIRE].CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    M. Cheneau et al., Light-cone-like spreading of correlations in a quantum many-body system, Nature 481 (2012) 484 [arXiv:1111.0776].CrossRefADSGoogle Scholar
  3. [3]
    M. Kliesch, C. Gogolin and J. Eisert, Lieb-Robinson bounds and the simulation of time evolution of local observables in lattice systems, arXiv:1306.0716.
  4. [4]
    P. Calabrese and J.L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech. 0504 (2005) P04010 [cond-mat/0503393] [INSPIRE].MathSciNetGoogle Scholar
  5. [5]
    P. Calabrese and J.L. Cardy, Time-dependence of correlation functions following a quantum quench, Phys. Rev. Lett. 96 (2006) 136801 [cond-mat/0601225] [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    P. Calabrese and J. Cardy, Quantum Quenches in Extended Systems, J. Stat. Mech. 0706 (2007) P06008 [arXiv:0704.1880] [INSPIRE].
  7. [7]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A Covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    T. Takayanagi, Entanglement Entropy from a Holographic Viewpoint, Class. Quant. Grav. 29 (2012) 153001 [arXiv:1204.2450] [INSPIRE].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].
  12. [12]
    P. Basu, D. Das, S.R. Das and K. Sengupta, Quantum Quench and Double Trace Couplings, JHEP 12 (2013) 070 [arXiv:1308.4061] [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    A. Buchel, R.C. Myers and A. van Niekerk, Universality of Abrupt Holographic Quenches, Phys. Rev. Lett. 111 (2013) 201602 [arXiv:1307.4740] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    T. Hartman and J. Maldacena, Time Evolution of Entanglement Entropy from Black Hole Interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    A. Buchel, L. Lehner, R.C. Myers and A. van Niekerk, Quantum quenches of holographic plasmas, JHEP 05 (2013) 067 [arXiv:1302.2924] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    A. Buchel, L. Lehner and R.C. Myers, Thermal quenches in N = 2* plasmas, JHEP 08 (2012) 049 [arXiv:1206.6785] [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    M. Rigol, V. Dunjko, V. Yurovsky and M. Olshanii, Relaxation in a completely integrable many-body quantum system: An ab initio study of the dynamics of the highly excited states o lattice hard-core bosons, Phys. Rev. Lett. 98 (2007) 050405 [cond-mat/0604476].CrossRefADSGoogle Scholar
  18. [18]
    C. Kollath, A. Laeucli and E. Altman, Quench dynamics and non equilibrium phase diagram of the Bose-Hubbard model, Phys. Rev. Lett. 98 (2007) 180601 [cond-mat/0607235].CrossRefADSGoogle Scholar
  19. [19]
    S.R. Manmana, S. Wessel, R.M. Noack and A. Muramatsu, Strongly correlated fermionsafter a quantum quench, Phys. Rev. Lett. 98 (2007) 210405 [cond-mat/0612030].CrossRefADSGoogle Scholar
  20. [20]
    S. Sotiriadis and J. Cardy, Quantum quench in interacting field theory: A Self-consistent approximation, Phys. Rev. B 81 (2010) 134305 [arXiv:1002.0167] [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    J. Abajo-Arrastia, J. Aparicio and E. Lopez, Holographic Evolution of Entanglement Entropy, JHEP 11 (2010) 149 [arXiv:1006.4090] [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    T. Albash and C.V. Johnson, Evolution of Holographic Entanglement Entropy after Thermal and Electromagnetic Quenches, New J. Phys. 13 (2011) 045017 [arXiv:1008.3027] [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    V. Balasubramanian et al., Thermalization of Strongly Coupled Field Theories, Phys. Rev. Lett. 106 (2011) 191601 [arXiv:1012.4753] [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    V. Balasubramanian et al., Holographic Thermalization, Phys. Rev. D 84 (2011) 026010 [arXiv:1103.2683] [INSPIRE].ADSGoogle Scholar
  25. [25]
    J. Aparicio and E. Lopez, Evolution of Two-Point Functions from Holography, JHEP 12 (2011) 082 [arXiv:1109.3571] [INSPIRE].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    V. Balasubramanian, A. Bernamonti, N. Copland, B. Craps and F. Galli, Thermalization of mutual and tripartite information in strongly coupled two dimensional conformal field theories, Phys. Rev. D 84 (2011) 105017 [arXiv:1110.0488] [INSPIRE].ADSGoogle Scholar
  27. [27]
    A. Allais and E. Tonni, Holographic evolution of the mutual information, JHEP 01 (2012) 102 [arXiv:1110.1607] [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    R. Callan, J.-Y. He and M. Headrick, Strong subadditivity and the covariant holographic entanglement entropy formula, JHEP 06 (2012) 081 [arXiv:1204.2309] [INSPIRE].CrossRefMathSciNetADSGoogle Scholar
  29. [29]
    V.E. Hubeny and H. Maxfield, Holographic probes of collapsing black holes, JHEP 03 (2014) 097 [arXiv:1312.6887] [INSPIRE].CrossRefADSGoogle Scholar
  30. [30]
    H. Liu and S.J. Suh, Entanglement Tsunami: Universal Scaling in Holographic Thermalization, Phys. Rev. Lett. 112 (2014) 011601 [arXiv:1305.7244] [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    H. Liu and S.J. Suh, Entanglement growth during thermalization in holographic systems, Phys. Rev. D 89 (2014) 066012 [arXiv:1311.1200] [INSPIRE].ADSGoogle Scholar
  32. [32]
    S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [INSPIRE].MathSciNetADSGoogle Scholar
  33. [33]
    B. Gouteraux and E. Kiritsis, Generalized Holographic Quantum Criticality at Finite Density, JHEP 12 (2011) 036 [arXiv:1107.2116] [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].CrossRefADSGoogle Scholar
  35. [35]
    X. Dong, S. Harrison, S. Kachru, G. Torroba and H. Wang, Aspects of holography for theories with hyperscaling violation, JHEP 06 (2012) 041 [arXiv:1201.1905] [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    N. Ogawa, T. Takayanagi and T. Ugajin, Holographic Fermi Surfaces and Entanglement Entropy, JHEP 01 (2012) 125 [arXiv:1111.1023] [INSPIRE].CrossRefMathSciNetADSGoogle Scholar
  37. [37]
    M.M. Wolf, Violation of the entropic area law for Fermions, Phys. Rev. Lett. 96 (2006) 010404 [quant-ph/0503219] [INSPIRE].CrossRefADSGoogle Scholar
  38. [38]
    D. Gioev and I. Klich, Entanglement Entropy of Fermions in Any Dimension and the Widom Conjecture, Phys. Rev. Lett. 96 (2006) 100503 [INSPIRE].CrossRefMathSciNetADSGoogle Scholar
  39. [39]
    B. Swingle, Entanglement Entropy and the Fermi Surface, Phys. Rev. Lett. 105 (2010) 050502 [arXiv:0908.1724] [INSPIRE].CrossRefMathSciNetADSGoogle Scholar
  40. [40]
    B. Swingle, Conformal Field Theory on the Fermi Surface, Phys. Rev. B 86 (2012) 035116 [arXiv:1002.4635] [INSPIRE].CrossRefADSGoogle Scholar
  41. [41]
    C. Charmousis, B. Gouteraux, B.S. Kim, E. Kiritsis and R. Meyer, Effective Holographic Theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].CrossRefADSGoogle Scholar
  42. [42]
    N. Iizuka, N. Kundu, P. Narayan and S.P. Trivedi, Holographic Fermi and Non-Fermi Liquids with Transitions in Dilaton Gravity, JHEP 01 (2012) 094 [arXiv:1105.1162] [INSPIRE].CrossRefADSGoogle Scholar
  43. [43]
    H. Singh, Special limits and non-relativistic solutions, JHEP 12 (2010) 061 [arXiv:1009.0651] [INSPIRE].CrossRefADSGoogle Scholar
  44. [44]
    K. Narayan, On Lifshitz scaling and hyperscaling violation in string theory, Phys. Rev. D 85 (2012) 106006 [arXiv:1202.5935] [INSPIRE].ADSGoogle Scholar
  45. [45]
    H. Singh, Lifshitz/Schródinger Dp-branes and dynamical exponents, JHEP 07 (2012) 082 [arXiv:1202.6533] [INSPIRE].CrossRefADSGoogle Scholar
  46. [46]
    P. Dey and S. Roy, Lifshitz-like space-time from intersecting branes in string/M theory, JHEP 06 (2012) 129 [arXiv:1203.5381] [INSPIRE].CrossRefMathSciNetADSGoogle Scholar
  47. [47]
    P. Dey and S. Roy, Intersecting D-branes and Lifshitz-like space-time, Phys. Rev. D 86 (2012) 066009 [arXiv:1204.4858] [INSPIRE].ADSGoogle Scholar
  48. [48]
    C. Charmousis, B. Gouteraux and E. Kiritsis, Higher-derivative scalar-vector-tensor theories: black holes, Galileons, singularity cloaking and holography, JHEP 09 (2012) 011 [arXiv:1206.1499] [INSPIRE].CrossRefADSGoogle Scholar
  49. [49]
    M. Ammon, M. Kaminski and A. Karch, Hyperscaling-Violation on Probe D-branes, JHEP 11 (2012) 028 [arXiv:1207.1726] [INSPIRE].CrossRefADSGoogle Scholar
  50. [50]
    J. Bhattacharya, S. Cremonini and A. Sinkovics, On the IR completion of geometries with hyperscaling violation, JHEP 02 (2013) 147 [arXiv:1208.1752] [INSPIRE].CrossRefMathSciNetADSGoogle Scholar
  51. [51]
    N. Kundu, P. Narayan, N. Sircar and S.P. Trivedi, Entangled Dilaton Dyons, JHEP 03 (2013) 155 [arXiv:1208.2008] [INSPIRE].CrossRefMathSciNetADSGoogle Scholar
  52. [52]
    P. Dey and S. Roy, Lifshitz metric with hyperscaling violation from NS5-Dp states in string theory, Phys. Lett. B 720 (2013) 419 [arXiv:1209.1049] [INSPIRE].CrossRefMathSciNetADSGoogle Scholar
  53. [53]
    E. Shaghoulian, Holographic Entanglement Entropy and Fermi Surfaces, JHEP 05 (2012) 065 [arXiv:1112.2702] [INSPIRE].CrossRefMathSciNetADSGoogle Scholar
  54. [54]
    M. Alishahiha, E. O Colgain and H. Yavartanoo, Charged Black Branes with Hyperscaling Violating Factor, JHEP 11 (2012) 137 [arXiv:1209.3946] [INSPIRE].CrossRefADSGoogle Scholar
  55. [55]
    P. Bueno, W. Chemissany, P. Meessen, T. Ortín and C.S. Shahbazi, Lifshitz-like Solutions with Hyperscaling Violation in Ungauged Supergravity, JHEP 01 (2013) 189 [arXiv:1209.4047] [INSPIRE].CrossRefADSGoogle Scholar
  56. [56]
    J. Gath, J. Hartong, R. Monteiro and N.A. Obers, Holographic Models for Theories with Hyperscaling Violation, JHEP 04 (2013) 159 [arXiv:1212.3263] [INSPIRE].CrossRefADSGoogle Scholar
  57. [57]
    B. Gouteraux and E. Kiritsis, Quantum critical lines in holographic phases with (un)broken symmetry, JHEP 04 (2013) 053 [arXiv:1212.2625] [INSPIRE].CrossRefADSGoogle Scholar
  58. [58]
    V. Keranen, E. Keski-Vakkuri and L. Thorlacius, Thermalization and entanglement following a non-relativistic holographic quench, Phys. Rev. D 85 (2012) 026005 [arXiv:1110.5035] [INSPIRE].ADSGoogle Scholar
  59. [59]
    M. Alishahiha, A.F. Astaneh and M.R.M. Mozaffar, Thermalization in Backgrounds with Hyperscaling Violating Factor, arXiv:1401.2807 [INSPIRE].
  60. [60]
    P. Vaidya, The Gravitational Field of a Radiating Star, Proc. Indian Acad. Sci. A33 (1951) 264.MathSciNetADSGoogle Scholar
  61. [61]
    W.B. Bonnor and P.C. Vaidya, Spherically symmetric radiation of charge in Einstein-Maxwell theory, Gen. Rel. Grav. 1 (1970) 127 [INSPIRE].CrossRefMathSciNetADSGoogle Scholar
  62. [62]
    E. Caceres, A. Kundu, J.F. Pedraza and W. Tangarife, Strong Subadditivity, Null Energy Condition and Charged Black Holes, JHEP 01 (2014) 084 [arXiv:1304.3398] [INSPIRE].CrossRefGoogle Scholar
  63. [63]
    V. Keranen and L. Thorlacius, Holographic geometries for condensed matter applications, arXiv:1307.2882 [INSPIRE].
  64. [64]
    V.E. Hubeny, H. Liu and M. Rangamani, Bulk-cone singularities & signatures of horizon formation in AdS/CFT, JHEP 01 (2007) 009 [hep-th/0610041] [INSPIRE].CrossRefMathSciNetADSGoogle Scholar
  65. [65]
    V.E. Hubeny, M. Rangamani and E. Tonni, Thermalization of Causal Holographic Information, JHEP 05 (2013) 136 [arXiv:1302.0853] [INSPIRE].CrossRefMathSciNetADSGoogle Scholar
  66. [66]
    H. Liu and M. Mezei, Probing renormalization group flows using entanglement entropy, JHEP 01 (2014) 098 [arXiv:1309.6935] [INSPIRE].CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Piermarco Fonda
    • 1
  • Lasse Franti
    • 2
  • Ville Keränen
    • 4
  • Esko Keski-Vakkuri
    • 2
    • 5
  • Larus Thorlacius
    • 3
    • 6
  • Erik Tonni
    • 1
  1. 1.SISSA and INFNTriesteItaly
  2. 2.Helsinki Institute of Physics and Department of PhysicsUniversity of HelsinkiHelsinkiFinland
  3. 3.Nordita, KTH Royal Institute of Technology and Stockholm UniversityStockholmSweden
  4. 4.Oxford University, Rudolf Peierls Center for Theoretical PhysicsOxfordUnited Kingdom
  5. 5.Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  6. 6.University of Iceland, Science InstituteReykjavikIceland

Personalised recommendations