Advertisement

Gravitino dark matter and flavor symmetries

  • Angelo Monteux
  • Eric Carlson
  • Jonathan M. Cornell
Open Access
Article

Abstract

In supersymmetric theories without R-parity, the gravitino can play the role of a decaying Dark Matter candidate without the problem of late NLSP decays affecting Big Bang Nucleosynthesis. In this work, we elaborate on recently discussed limits on R- parity violating couplings from decays to antideuterons and discuss the implications for two classes of flavor symmetries: horizontal symmetries, and Minimal Flavor Violation. In most of the parameter space the antideuteron constraints on R-parity violating couplings are stronger than low-energy baryon-number-violating processes. Even in the absence of flavor symmetries, we find strong new limits on couplings involving third-generation fields, and discuss the implications for LHC phenomenology. For TeV scale superpartners, we find that the allowed MFV parameter space is a corner with gravitino masses smaller than \( \mathcal{O} \)(10) GeV and small tan β.

Keywords

Supersymmetric Standard Model Cosmology of Theories beyond the SM 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    G.R. Farrar and P. Fayet, Phenomenology of the production, decay and detection of new hadronic states associated with supersymmetry, Phys. Lett. B 76 (1978) 575 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M.C. Bento, L.J. Hall and G.G. Ross, Generalized matter parities from the superstring, Nucl. Phys. B 292 (1987) 400 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    L.E. Ibáñez and G.G. Ross, Fermion masses and mixing angles from gauge symmetries, Phys. Lett. B 332 (1994) 100 [hep-ph/9403338] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    H.K. Dreiner, C. Luhn and M. Thormeier, What is the discrete gauge symmetry of the MSSM?, Phys. Rev. D 73 (2006) 075007 [hep-ph/0512163] [INSPIRE].ADSGoogle Scholar
  5. [5]
    C.D. Froggatt and H.B. Nielsen, Hierarchy of quark masses, Cabibbo angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M. Leurer, Y. Nir and N. Seiberg, Mass matrix models, Nucl. Phys. B 398 (1993) 319 [hep-ph/9212278] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    Y. Nir and N. Seiberg, Should squarks be degenerate?, Phys. Lett. B 309 (1993) 337 [hep-ph/9304307] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    E. Nikolidakis and C. Smith, Minimal flavor violation, seesaw and R-parity, Phys. Rev. D 77 (2008) 015021 [arXiv:0710.3129] [INSPIRE].ADSGoogle Scholar
  9. [9]
    C. Csáki, Y. Grossman and B. Heidenreich, MFV SUSY: a natural theory for R-parity violation, Phys. Rev. D 85 (2012) 095009 [arXiv:1111.1239] [INSPIRE].ADSGoogle Scholar
  10. [10]
    A. Monteux, Natural, R-parity violating supersymmetry and horizontal flavor symmetries, Phys. Rev. D 88 (2013) 045029 [arXiv:1305.2921] [INSPIRE].ADSGoogle Scholar
  11. [11]
    A.S. Joshipura, R.D. Vaidya and S.K. Vempati, U(1) symmetry and R-parity violation, Phys. Rev. D 62 (2000) 093020 [hep-ph/0006138] [INSPIRE].ADSGoogle Scholar
  12. [12]
    A. Florez, D. Restrepo, M. Velasquez and O. Zapata, Baryonic violation of R-parity from anomalous U(1)H, Phys. Rev. D 87 (2013) 095010 [arXiv:1303.0278] [INSPIRE].ADSGoogle Scholar
  13. [13]
    D. Aristizabal Sierra, D. Restrepo and O. Zapata, Decaying neutralino dark matter in anomalous U(1)H models, Phys. Rev. D 80 (2009) 055010 [arXiv:0907.0682] [INSPIRE].ADSGoogle Scholar
  14. [14]
    M.Y. Khlopov and A.D. Linde, Is it easy to save the gravitino?, Phys. Lett. B 138 (1984) 265 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    T. Moroi, Effects of the gravitino on the inflationary universe, hep-ph/9503210 [INSPIRE].
  16. [16]
    F. Takayama and M. Yamaguchi, Gravitino dark matter without R-parity, Phys. Lett. B 485 (2000) 388 [hep-ph/0005214] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    K. Ishiwata, S. Matsumoto and T. Moroi, High energy cosmic rays from the decay of gravitino dark matter, Phys. Rev. D 78 (2008) 063505 [arXiv:0805.1133] [INSPIRE].ADSGoogle Scholar
  18. [18]
    M. Grefe and T. Delahaye, Antiproton limits on decaying gravitino dark matter, arXiv:1401.2564 [INSPIRE].
  19. [19]
    S. Bobrovskyi, W. Buchmüller, J. Hajer and J. Schmidt, Broken R-parity in the sky and at the LHC, JHEP 10 (2010) 061 [arXiv:1007.5007] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    G. Bertone, W. Buchmüller, L. Covi and A. Ibarra, Gamma-rays from decaying dark matter, JCAP 11 (2007) 003 [arXiv:0709.2299] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S. Lola, P. Osland and A.R. Raklev, Radiative gravitino decays from R-parity violation, Phys. Lett. B 656 (2007) 83 [arXiv:0707.2510] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    N.-E. Bomark, S. Lola, P. Osland and A.R. Raklev, Gravitino dark matter and the flavour structure of R-violating operators, Phys. Lett. B 677 (2009) 62 [arXiv:0811.2969] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    N.-E. Bomark, S. Lola, P. Osland and A.R. Raklev, Photon, neutrino and charged particle spectra from R-violating gravitino decays, Phys. Lett. B 686 (2010) 152 [arXiv:0911.3376] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    L.A. Dal and A.R. Raklev, Antideuteron limits on decaying dark matter with a tuned formation model, Phys. Rev. D 89 (2014) 103504 [arXiv:1402.6259] [INSPIRE].ADSGoogle Scholar
  25. [25]
    G. Moreau and M. Chemtob, R-parity violation and the cosmological gravitino problem, Phys. Rev. D 65 (2002) 024033 [hep-ph/0107286] [INSPIRE].ADSGoogle Scholar
  26. [26]
    L.J. Hall, J.T. Ruderman and T. Volansky, A cosmological upper bound on superpartner masses, arXiv:1302.2620 [INSPIRE].
  27. [27]
    BESS collaboration, S. Orito et al., Precision measurement of cosmic ray anti-proton spectrum, Phys. Rev. Lett. 84 (2000) 1078 [astro-ph/9906426] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    BESS collaboration, T. Maeno et al., Successive measurements of cosmic ray anti-proton spectrum in a positive phase of the solar cycle, Astropart. Phys. 16 (2001) 121 [astro-ph/0010381] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S. Haino et al., Measurements of primary and atmospheric cosmic-ray spectra with the BESS-TeV spectrometer, Phys. Lett. B 594 (2004) 35 [astro-ph/0403704] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    O. Adriani et al., A new measurement of the antiproton-to-proton flux ratio up to 100 GeV in the cosmic radiation, Phys. Rev. Lett. 102 (2009) 051101 [arXiv:0810.4994] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    F. Donato, N. Fornengo and P. Salati, Anti-deuterons as a signature of supersymmetric dark matter, Phys. Rev. D 62 (2000) 043003 [hep-ph/9904481] [INSPIRE].ADSGoogle Scholar
  32. [32]
    N. Fornengo, L. Maccione and A. Vittino, Dark matter searches with cosmic antideuterons: status and perspectives, JCAP 09 (2013) 031 [arXiv:1306.4171] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A. Ibarra and S. Wild, Prospects of antideuteron detection from dark matter annihilations or decays at AMS-02 and GAPS, JCAP 02 (2013) 021 [arXiv:1209.5539] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    R. Duperray et al., Flux of light antimatter nuclei near earth, induced by cosmic rays in the galaxy and in the atmosphere, Phys. Rev. D 71 (2005) 083013 [astro-ph/0503544] [INSPIRE].ADSGoogle Scholar
  35. [35]
    E. Carlson et al., Antihelium from dark matter, arXiv:1401.2461 [INSPIRE].
  36. [36]
    M. Cirelli, N. Fornengo, M. Taoso and A. Vittino, Anti-helium from dark matter annihilations, arXiv:1401.4017 [INSPIRE].
  37. [37]
    H. Baer and S. Profumo, Low energy antideuterons: shedding light on dark matter, JCAP 12 (2005) 008 [astro-ph/0510722] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    Y. Cui, J.D. Mason and L. Randall, General analysis of antideuteron searches for dark matter, JHEP 11 (2010) 017 [arXiv:1006.0983] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    A. Ibarra and S. Wild, Determination of the cosmic antideuteron flux in a Monte Carlo approach, Phys. Rev. D 88 (2013) 023014 [arXiv:1301.3820] [INSPIRE].ADSGoogle Scholar
  40. [40]
    M. Kadastik, M. Raidal and A. Strumia, Enhanced anti-deuteron dark matter signal and the implications of PAMELA, Phys. Lett. B 683 (2010) 248 [arXiv:0908.1578] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    N.D. Christensen et al., Simulating spin- \( \frac{3}{2} \) particles at colliders, Eur. Phys. J. C 73 (2013) 2580 [arXiv:1308.1668] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    B. Fuks, Beyond the minimal supersymmetric standard model: from theory to phenomenology, Int. J. Mod. Phys. A 27 (2012) 1230007 [arXiv:1202.4769] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  46. [46]
    ALEPH collaboration, S. Schael et al., Deuteron and anti-deuteron production in e + e collisions at the Z resonance, Phys. Lett. B 639 (2006) 192 [hep-ex/0604023] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    L.J. Gleeson and W.I. Axford, Solar modulation of galactic cosmic rays, Astrophys. J. 154 (1968) 1011 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    L.A. Dal and M. Kachelriess, Antideuterons from dark matter annihilations and hadronization model dependence, Phys. Rev. D 86 (2012) 103536 [arXiv:1207.4560] [INSPIRE].ADSGoogle Scholar
  49. [49]
    A. Ibarra, D. Tran and C. Weniger, Indirect searches for decaying dark matter, Int. J. Mod. Phys. A 28 (2013) 1330040 [arXiv:1307.6434] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    H. Fuke et al., Search for cosmic-ray antideuterons, Phys. Rev. Lett. 95 (2005) 081101 [astro-ph/0504361] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    ATLAS collaboration, Search for direct third-generation squark pair production in final states with missing transverse momentum and two b-jets in \( \sqrt{s} \) = 8 TeV pp collisions with the ATLAS detector, JHEP 10 (2013) 189 [arXiv:1308.2631] [INSPIRE].ADSGoogle Scholar
  52. [52]
    CMS collaboration, Search for supersymmetry in hadronic final states with missing transverse energy using the variables α T and b-quark multiplicity in pp collisions at \( \sqrt{s} \) = 8 TeV, Eur. Phys. J. C 73 (2013) 2568 [arXiv:1303.2985] [INSPIRE].ADSGoogle Scholar
  53. [53]
    K. Barry, P.W. Graham and S. Rajendran, Baryonecrosis: displaced vertices from R-parity violation, Phys. Rev. D 89 (2014) 054003 [arXiv:1310.3853] [INSPIRE].ADSGoogle Scholar
  54. [54]
    G. Krnjaic and Y. Tsai, Soft RPV through the baryon portal, JHEP 03 (2014) 104 [arXiv:1304.7004] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    I. Affleck and M. Dine, A new mechanism for baryogenesis, Nucl. Phys. B 249 (1985) 361 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  56. [56]
    S. Dimopoulos and L.J. Hall, Baryogenesis at the MeV era, Phys. Lett. B 196 (1987) 135 [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    Y. Cui and R. Sundrum, Baryogenesis for weakly interacting massive particles, Phys. Rev. D 87 (2013) 116013 [arXiv:1212.2973] [INSPIRE].ADSGoogle Scholar
  58. [58]
    BICEP2 collaboration, P.A.R. Ade et al., Detection of b-mode polarization at degree angular scales by BICEP2, Phys. Rev. Lett. 112 (2014) 241101 [arXiv:1403.3985] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    K. Choi, E.J. Chun and J.S. Lee, Proton decay with a light gravitino or axino, Phys. Rev. D 55 (1997) 3924 [hep-ph/9611285] [INSPIRE].ADSGoogle Scholar
  60. [60]
    K. Choi, K. Hwang and J.S. Lee, Constraints on R-parity and b-violating couplings in gauge mediated supersymmetry breaking models, Phys. Lett. B 428 (1998) 129 [hep-ph/9802323] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    E. Carlson, J. Cornell and A. Monteux, Astroparticle constraints on unstable gravitino dark matter, in preparation.Google Scholar
  62. [62]
    M. Savastio, Cosmological constraints on MFV SUSY, JHEP 07 (2014) 025 [arXiv:1404.3710] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Angelo Monteux
    • 1
  • Eric Carlson
    • 1
  • Jonathan M. Cornell
    • 1
  1. 1.Santa Cruz Institute for Particle Physics and Department of PhysicsUniversity of California Santa CruzSanta CruzU.S.A.

Personalised recommendations