Gravitino dark matter and flavor symmetries

  • Angelo Monteux
  • Eric Carlson
  • Jonathan M. Cornell
Open Access


In supersymmetric theories without R-parity, the gravitino can play the role of a decaying Dark Matter candidate without the problem of late NLSP decays affecting Big Bang Nucleosynthesis. In this work, we elaborate on recently discussed limits on R- parity violating couplings from decays to antideuterons and discuss the implications for two classes of flavor symmetries: horizontal symmetries, and Minimal Flavor Violation. In most of the parameter space the antideuteron constraints on R-parity violating couplings are stronger than low-energy baryon-number-violating processes. Even in the absence of flavor symmetries, we find strong new limits on couplings involving third-generation fields, and discuss the implications for LHC phenomenology. For TeV scale superpartners, we find that the allowed MFV parameter space is a corner with gravitino masses smaller than \( \mathcal{O} \)(10) GeV and small tan β.


Supersymmetric Standard Model Cosmology of Theories beyond the SM 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    G.R. Farrar and P. Fayet, Phenomenology of the production, decay and detection of new hadronic states associated with supersymmetry, Phys. Lett. B 76 (1978) 575 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M.C. Bento, L.J. Hall and G.G. Ross, Generalized matter parities from the superstring, Nucl. Phys. B 292 (1987) 400 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    L.E. Ibáñez and G.G. Ross, Fermion masses and mixing angles from gauge symmetries, Phys. Lett. B 332 (1994) 100 [hep-ph/9403338] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    H.K. Dreiner, C. Luhn and M. Thormeier, What is the discrete gauge symmetry of the MSSM?, Phys. Rev. D 73 (2006) 075007 [hep-ph/0512163] [INSPIRE].ADSGoogle Scholar
  5. [5]
    C.D. Froggatt and H.B. Nielsen, Hierarchy of quark masses, Cabibbo angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M. Leurer, Y. Nir and N. Seiberg, Mass matrix models, Nucl. Phys. B 398 (1993) 319 [hep-ph/9212278] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    Y. Nir and N. Seiberg, Should squarks be degenerate?, Phys. Lett. B 309 (1993) 337 [hep-ph/9304307] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    E. Nikolidakis and C. Smith, Minimal flavor violation, seesaw and R-parity, Phys. Rev. D 77 (2008) 015021 [arXiv:0710.3129] [INSPIRE].ADSGoogle Scholar
  9. [9]
    C. Csáki, Y. Grossman and B. Heidenreich, MFV SUSY: a natural theory for R-parity violation, Phys. Rev. D 85 (2012) 095009 [arXiv:1111.1239] [INSPIRE].ADSGoogle Scholar
  10. [10]
    A. Monteux, Natural, R-parity violating supersymmetry and horizontal flavor symmetries, Phys. Rev. D 88 (2013) 045029 [arXiv:1305.2921] [INSPIRE].ADSGoogle Scholar
  11. [11]
    A.S. Joshipura, R.D. Vaidya and S.K. Vempati, U(1) symmetry and R-parity violation, Phys. Rev. D 62 (2000) 093020 [hep-ph/0006138] [INSPIRE].ADSGoogle Scholar
  12. [12]
    A. Florez, D. Restrepo, M. Velasquez and O. Zapata, Baryonic violation of R-parity from anomalous U(1)H, Phys. Rev. D 87 (2013) 095010 [arXiv:1303.0278] [INSPIRE].ADSGoogle Scholar
  13. [13]
    D. Aristizabal Sierra, D. Restrepo and O. Zapata, Decaying neutralino dark matter in anomalous U(1)H models, Phys. Rev. D 80 (2009) 055010 [arXiv:0907.0682] [INSPIRE].ADSGoogle Scholar
  14. [14]
    M.Y. Khlopov and A.D. Linde, Is it easy to save the gravitino?, Phys. Lett. B 138 (1984) 265 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    T. Moroi, Effects of the gravitino on the inflationary universe, hep-ph/9503210 [INSPIRE].
  16. [16]
    F. Takayama and M. Yamaguchi, Gravitino dark matter without R-parity, Phys. Lett. B 485 (2000) 388 [hep-ph/0005214] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    K. Ishiwata, S. Matsumoto and T. Moroi, High energy cosmic rays from the decay of gravitino dark matter, Phys. Rev. D 78 (2008) 063505 [arXiv:0805.1133] [INSPIRE].ADSGoogle Scholar
  18. [18]
    M. Grefe and T. Delahaye, Antiproton limits on decaying gravitino dark matter, arXiv:1401.2564 [INSPIRE].
  19. [19]
    S. Bobrovskyi, W. Buchmüller, J. Hajer and J. Schmidt, Broken R-parity in the sky and at the LHC, JHEP 10 (2010) 061 [arXiv:1007.5007] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    G. Bertone, W. Buchmüller, L. Covi and A. Ibarra, Gamma-rays from decaying dark matter, JCAP 11 (2007) 003 [arXiv:0709.2299] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S. Lola, P. Osland and A.R. Raklev, Radiative gravitino decays from R-parity violation, Phys. Lett. B 656 (2007) 83 [arXiv:0707.2510] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    N.-E. Bomark, S. Lola, P. Osland and A.R. Raklev, Gravitino dark matter and the flavour structure of R-violating operators, Phys. Lett. B 677 (2009) 62 [arXiv:0811.2969] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    N.-E. Bomark, S. Lola, P. Osland and A.R. Raklev, Photon, neutrino and charged particle spectra from R-violating gravitino decays, Phys. Lett. B 686 (2010) 152 [arXiv:0911.3376] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    L.A. Dal and A.R. Raklev, Antideuteron limits on decaying dark matter with a tuned formation model, Phys. Rev. D 89 (2014) 103504 [arXiv:1402.6259] [INSPIRE].ADSGoogle Scholar
  25. [25]
    G. Moreau and M. Chemtob, R-parity violation and the cosmological gravitino problem, Phys. Rev. D 65 (2002) 024033 [hep-ph/0107286] [INSPIRE].ADSGoogle Scholar
  26. [26]
    L.J. Hall, J.T. Ruderman and T. Volansky, A cosmological upper bound on superpartner masses, arXiv:1302.2620 [INSPIRE].
  27. [27]
    BESS collaboration, S. Orito et al., Precision measurement of cosmic ray anti-proton spectrum, Phys. Rev. Lett. 84 (2000) 1078 [astro-ph/9906426] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    BESS collaboration, T. Maeno et al., Successive measurements of cosmic ray anti-proton spectrum in a positive phase of the solar cycle, Astropart. Phys. 16 (2001) 121 [astro-ph/0010381] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S. Haino et al., Measurements of primary and atmospheric cosmic-ray spectra with the BESS-TeV spectrometer, Phys. Lett. B 594 (2004) 35 [astro-ph/0403704] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    O. Adriani et al., A new measurement of the antiproton-to-proton flux ratio up to 100 GeV in the cosmic radiation, Phys. Rev. Lett. 102 (2009) 051101 [arXiv:0810.4994] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    F. Donato, N. Fornengo and P. Salati, Anti-deuterons as a signature of supersymmetric dark matter, Phys. Rev. D 62 (2000) 043003 [hep-ph/9904481] [INSPIRE].ADSGoogle Scholar
  32. [32]
    N. Fornengo, L. Maccione and A. Vittino, Dark matter searches with cosmic antideuterons: status and perspectives, JCAP 09 (2013) 031 [arXiv:1306.4171] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A. Ibarra and S. Wild, Prospects of antideuteron detection from dark matter annihilations or decays at AMS-02 and GAPS, JCAP 02 (2013) 021 [arXiv:1209.5539] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    R. Duperray et al., Flux of light antimatter nuclei near earth, induced by cosmic rays in the galaxy and in the atmosphere, Phys. Rev. D 71 (2005) 083013 [astro-ph/0503544] [INSPIRE].ADSGoogle Scholar
  35. [35]
    E. Carlson et al., Antihelium from dark matter, arXiv:1401.2461 [INSPIRE].
  36. [36]
    M. Cirelli, N. Fornengo, M. Taoso and A. Vittino, Anti-helium from dark matter annihilations, arXiv:1401.4017 [INSPIRE].
  37. [37]
    H. Baer and S. Profumo, Low energy antideuterons: shedding light on dark matter, JCAP 12 (2005) 008 [astro-ph/0510722] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    Y. Cui, J.D. Mason and L. Randall, General analysis of antideuteron searches for dark matter, JHEP 11 (2010) 017 [arXiv:1006.0983] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    A. Ibarra and S. Wild, Determination of the cosmic antideuteron flux in a Monte Carlo approach, Phys. Rev. D 88 (2013) 023014 [arXiv:1301.3820] [INSPIRE].ADSGoogle Scholar
  40. [40]
    M. Kadastik, M. Raidal and A. Strumia, Enhanced anti-deuteron dark matter signal and the implications of PAMELA, Phys. Lett. B 683 (2010) 248 [arXiv:0908.1578] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    N.D. Christensen et al., Simulating spin- \( \frac{3}{2} \) particles at colliders, Eur. Phys. J. C 73 (2013) 2580 [arXiv:1308.1668] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    B. Fuks, Beyond the minimal supersymmetric standard model: from theory to phenomenology, Int. J. Mod. Phys. A 27 (2012) 1230007 [arXiv:1202.4769] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  46. [46]
    ALEPH collaboration, S. Schael et al., Deuteron and anti-deuteron production in e + e collisions at the Z resonance, Phys. Lett. B 639 (2006) 192 [hep-ex/0604023] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    L.J. Gleeson and W.I. Axford, Solar modulation of galactic cosmic rays, Astrophys. J. 154 (1968) 1011 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    L.A. Dal and M. Kachelriess, Antideuterons from dark matter annihilations and hadronization model dependence, Phys. Rev. D 86 (2012) 103536 [arXiv:1207.4560] [INSPIRE].ADSGoogle Scholar
  49. [49]
    A. Ibarra, D. Tran and C. Weniger, Indirect searches for decaying dark matter, Int. J. Mod. Phys. A 28 (2013) 1330040 [arXiv:1307.6434] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    H. Fuke et al., Search for cosmic-ray antideuterons, Phys. Rev. Lett. 95 (2005) 081101 [astro-ph/0504361] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    ATLAS collaboration, Search for direct third-generation squark pair production in final states with missing transverse momentum and two b-jets in \( \sqrt{s} \) = 8 TeV pp collisions with the ATLAS detector, JHEP 10 (2013) 189 [arXiv:1308.2631] [INSPIRE].ADSGoogle Scholar
  52. [52]
    CMS collaboration, Search for supersymmetry in hadronic final states with missing transverse energy using the variables α T and b-quark multiplicity in pp collisions at \( \sqrt{s} \) = 8 TeV, Eur. Phys. J. C 73 (2013) 2568 [arXiv:1303.2985] [INSPIRE].ADSGoogle Scholar
  53. [53]
    K. Barry, P.W. Graham and S. Rajendran, Baryonecrosis: displaced vertices from R-parity violation, Phys. Rev. D 89 (2014) 054003 [arXiv:1310.3853] [INSPIRE].ADSGoogle Scholar
  54. [54]
    G. Krnjaic and Y. Tsai, Soft RPV through the baryon portal, JHEP 03 (2014) 104 [arXiv:1304.7004] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    I. Affleck and M. Dine, A new mechanism for baryogenesis, Nucl. Phys. B 249 (1985) 361 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  56. [56]
    S. Dimopoulos and L.J. Hall, Baryogenesis at the MeV era, Phys. Lett. B 196 (1987) 135 [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    Y. Cui and R. Sundrum, Baryogenesis for weakly interacting massive particles, Phys. Rev. D 87 (2013) 116013 [arXiv:1212.2973] [INSPIRE].ADSGoogle Scholar
  58. [58]
    BICEP2 collaboration, P.A.R. Ade et al., Detection of b-mode polarization at degree angular scales by BICEP2, Phys. Rev. Lett. 112 (2014) 241101 [arXiv:1403.3985] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    K. Choi, E.J. Chun and J.S. Lee, Proton decay with a light gravitino or axino, Phys. Rev. D 55 (1997) 3924 [hep-ph/9611285] [INSPIRE].ADSGoogle Scholar
  60. [60]
    K. Choi, K. Hwang and J.S. Lee, Constraints on R-parity and b-violating couplings in gauge mediated supersymmetry breaking models, Phys. Lett. B 428 (1998) 129 [hep-ph/9802323] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    E. Carlson, J. Cornell and A. Monteux, Astroparticle constraints on unstable gravitino dark matter, in preparation.Google Scholar
  62. [62]
    M. Savastio, Cosmological constraints on MFV SUSY, JHEP 07 (2014) 025 [arXiv:1404.3710] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Angelo Monteux
    • 1
  • Eric Carlson
    • 1
  • Jonathan M. Cornell
    • 1
  1. 1.Santa Cruz Institute for Particle Physics and Department of PhysicsUniversity of California Santa CruzSanta CruzU.S.A.

Personalised recommendations