Taming infrared divergences in the effective potential

  • J. Elias-MiróEmail author
  • J. R. Espinosa
  • T. Konstandin
Open Access


The Higgs effective potential in the Standard Model (SM), calculated perturbatively, generically suffers from infrared (IR) divergences when the (field-dependent) tree-level mass of the Goldstone bosons goes to zero. Such divergences can affect both the potential and its first derivative and become worse with increasing loop order. In this paper we show that these IR divergences are spurious, we perform a simple resummation of all IR-problematic terms known (up to three loops) and explain how to extend the resummation to cure all such divergences to any order. The method is of general applicability and would work in scenarios other than the SM. Our discussion has some bearing on a scenario recently proposed as a mechanism for gauge mediation of scale breaking in the ultraviolet, in which it is claimed that the low-energy Higgs potential is non-standard. We argue that all non-decoupling effects from the heavy sector can be absorbed in the renormalization of low-energy parameters leading to a SM-like effective theory.


Spontaneous Symmetry Breaking Standard Model Higgs Physics Beyond Standard Model 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089 [arXiv:1307.3536] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    F. Bezrukov, M.Y. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs boson mass and new physics, JHEP 10 (2012) 140 [arXiv:1205.2893] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M. Holthausen, K.S. Lim and M. Lindner, Planck scale boundary conditions and the Higgs mass, JHEP 02 (2012) 037 [arXiv:1112.2415] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J. Elias-Miró et al., Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett. B 709 (2012) 222 [arXiv:1112.3022] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S. Alekhin, A. Djouadi and S. Moch, The top quark and Higgs boson masses and the stability of the electroweak vacuum, Phys. Lett. B 716 (2012) 214 [arXiv:1207.0980] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    ATLAS, CDF, CMS and D0 collaborations, First combination of Tevatron and LHC measurements of the top-quark mass, arXiv:1403.4427 [INSPIRE].
  8. [8]
    ATLAS collaboration, Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC, Phys. Lett. B 726 (2013) 88 [arXiv:1307.1427] [INSPIRE].ADSGoogle Scholar
  9. [9]
    CMS collaboration, Combination of Standard Model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-13-005, CERN, Geneva Switzerland (2013).
  10. [10]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  11. [11]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  12. [12]
    C. Ford, I. Jack and D.R.T. Jones, The Standard Model effective potential at two loops, Nucl. Phys. B 387 (1992) 373 [Erratum ibid. B 504 (1997) 551] [hep-ph/0111190] [INSPIRE].
  13. [13]
    K.G. Chetyrkin and M.F. Zoller, Three-loop β-functions for top-Yukawa and the Higgs self-interaction in the Standard Model, JHEP 06 (2012) 033 [arXiv:1205.2892] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A.V. Bednyakov, A.F. Pikelner and V.N. Velizhanin, Yukawa coupling β-functions in the Standard Model at three loops, Phys. Lett. B 722 (2013) 336 [arXiv:1212.6829] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S.P. Martin, Three-loop Standard Model effective potential at leading order in strong and top Yukawa couplings, Phys. Rev. D 89 (2014) 013003 [arXiv:1310.7553] [INSPIRE].ADSGoogle Scholar
  16. [16]
    C. Ford, D.R.T. Jones, P.W. Stephenson and M.B. Einhorn, The effective potential and the renormalization group, Nucl. Phys. B 395 (1993) 17 [hep-lat/9210033] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M.B. Einhorn and D.R.T. Jones, The effective potential, the renormalisation group and vacuum stability, JHEP 04 (2007) 051 [hep-ph/0702295] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    S. Abel and A. Mariotti, Novel Higgs potentials from gauge mediation of exact scale breaking, arXiv:1312.5335 [INSPIRE].
  19. [19]
    S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].ADSGoogle Scholar
  20. [20]
    K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, The electroweak phase transition: a nonperturbative analysis, Nucl. Phys. B 466 (1996) 189 [hep-lat/9510020] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J.A. Casas, J.R. Espinosa, M. Quirós and A. Riotto, The lightest Higgs boson mass in the minimal supersymmetric Standard Model, Nucl. Phys. B 436 (1995) 3 [Erratum ibid. B 439 (1995) 466] [hep-ph/9407389] [INSPIRE].
  22. [22]
    M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys. B 522 (1998) 321 [hep-ph/9711391] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    B. Jantzen, Foundation and generalization of the expansion by regions, JHEP 12 (2011) 076 [arXiv:1111.2589] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    K.I. Aoki, Z. Hioki, M. Konuma, R. Kawabe and T. Muta, Electroweak theory. Framework of on-shell renormalization and study of higher order effects, Prog. Theor. Phys. Suppl. 73 (1982) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    S.P. Martin, Two loop effective potential for a general renormalizable theory and softly broken supersymmetry, Phys. Rev. D 65 (2002) 116003 [hep-ph/0111209] [INSPIRE].ADSGoogle Scholar
  26. [26]
    J.R. Espinosa and R.-J. Zhang, Complete two loop dominant corrections to the mass of the lightest CP even Higgs boson in the minimal supersymmetric Standard Model, Nucl. Phys. B 586 (2000) 3 [hep-ph/0003246] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J.M. Cornwall, R. Jackiw and E. Tomboulis, Effective action for composite operators, Phys. Rev. D 10 (1974) 2428 [INSPIRE].ADSGoogle Scholar
  28. [28]
    J.-P. Blaizot, E. Iancu and U. Reinosa, Renormalization of Φ derivable approximations in scalar field theories, Nucl. Phys. A 736 (2004) 149 [hep-ph/0312085] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    G.C. Dorsch, S.J. Huber and J.M. No, Cosmological signatures of a UV-conformal Standard Model, arXiv:1403.5583 [INSPIRE].
  30. [30]
    T. Appelquist and J. Carazzone, Infrared singularities and massive fields, Phys. Rev. D 11 (1975) 2856 [INSPIRE].ADSGoogle Scholar
  31. [31]
    E. D’Hoker and E. Farhi, Decoupling a fermion whose mass is generated by a Yukawa coupling: the general case, Nucl. Phys. B 248 (1984) 59 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    H. Georgi, Effective field theory, Ann. Rev. Nucl. Part. Sci. 43 (1993) 209 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    C.P. Burgess, Introduction to effective field theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 329 [hep-th/0701053] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    S.P. Martin, Two loop scalar self energies in a general renormalizable theory at leading order in gauge couplings, Phys. Rev. D 70 (2004) 016005 [hep-ph/0312092] [INSPIRE].ADSGoogle Scholar
  35. [35]
    S.P. Martin, Evaluation of two loop selfenergy basis integrals using differential equations, Phys. Rev. D 68 (2003) 075002 [hep-ph/0307101] [INSPIRE].ADSGoogle Scholar
  36. [36]
    S.P. Martin, Taming the Goldstone contributions to the effective potential, arXiv:1406.2355 [INSPIRE].

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • J. Elias-Miró
    • 1
    • 2
    Email author
  • J. R. Espinosa
    • 1
    • 3
  • T. Konstandin
    • 4
  1. 1.IFAE, Universitat Autònoma de BarcelonaBarcelonaSpain
  2. 2.Dept. de FísicaUniversitat Autònoma de BarcelonaBarcelonaSpain
  3. 3.ICREA, Institució Catalana de Recerca i Estudis AvançatsBarcelonaSpain
  4. 4.DESYHamburgGermany

Personalised recommendations