Standard model Higgs boson pair production in the (\( b\overline{b} \))(\( b\overline{b} \)) final state

  • Danilo Enoque Ferreira de Lima
  • Andreas Papaefstathiou
  • Michael Spannowsky
Open Access
Article

Abstract

Measuring the Higgs boson couplings as precisely as possible is one of the major goals of the High Luminosity LHC. We show that the (\( b\overline{b} \))(\( b\overline{b} \)) final state in Higgs boson pair production can be exploited in the boosted regime to give constraints on the trilinear Higgs boson self-coupling. In these exclusive phase space regions, novel jet substructure techniques can be used to separate the signal from the large QCD and electroweak backgrounds. New developments on trigger and b-tagging strategies for the upcoming LHC runs are necessary in order to reconstruct the Higgs bosons in boosted final states, where the trilinear self-coupling sensitivity is reduced. We find that using our approach one can set a limit for λ ≤ 1.2 at 95% CL after 3000 fb−1. As the signal-to-background ratio is small, we propose a data-driven side-band analysis to improve on the coupling measurement.

Keywords

Jets Hadronic Colliders 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, CMS-HIG-12-028 (2012).
  3. [3]
    CMS collaboration, CMS Collaboration, CMS-PAS-HIG-12-045 (2012).
  4. [4]
    ATLAS collaboration, Coupling properties of the new Higgs-like boson observed with the ATLAS detector at the LHC, ATLAS-CONF-2012-127 (2012).
  5. [5]
    ATLAS collaboration, An update of combined measurements of the new Higgs-like boson with high mass resolution channels, ATLAS-CONF-2012-170 (2012).
  6. [6]
    G.J. Gounaris, D. Schildknecht and F.M. Renard, Test of Higgs Boson Nature in e + e HHZ, Phys. Lett. B 83 (1979) 191 [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    S. Kanemura, S. Kiyoura, Y. Okada, E. Senaha and C.P. Yuan, New physics effect on the Higgs selfcoupling, Phys. Lett. B 558 (2003) 157 [hep-ph/0211308] [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    J. Grigo, J. Hoff, K. Melnikov and M. Steinhauser, On the Higgs boson pair production at the LHC, Nucl. Phys. B 875 (2013) 1 [arXiv:1305.7340] [INSPIRE].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    T. Plehn and M. Rauch, The quartic Higgs coupling at hadron colliders, Phys. Rev. D 72 (2005) 053008 [hep-ph/0507321] [INSPIRE].ADSGoogle Scholar
  10. [10]
    T. Binoth, S. Karg, N. Kauer and R. Ruckl, Multi-Higgs boson production in the Standard Model and beyond, Phys. Rev. D 74 (2006) 113008 [hep-ph/0608057] [INSPIRE].ADSGoogle Scholar
  11. [11]
    D.J. Miller and S. Moretti, Can the trilinear Higgs selfcoupling be measured at future linear colliders?, Eur. Phys. J. C 13 (2000) 459 [hep-ph/9906395] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    A. Djouadi, W. Kilian, M. Muhlleitner and P.M. Zerwas, Testing Higgs selfcouplings at e + e linear colliders, Eur. Phys. J. C 10 (1999) 27 [hep-ph/9903229] [INSPIRE].ADSGoogle Scholar
  13. [13]
    C. Castanier, P. Gay, P. Lutz and J. Orloff, Higgs self coupling measurement in e + e collisions at center-of-mass energy of 500 GeV, hep-ex/0101028 [INSPIRE].
  14. [14]
    E.W.N. Glover and J.J. van der Bij, Higgs boson pair production via gluon fusion, Nucl. Phys. B 309 (1988) 282 [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    S. Dawson, S. Dittmaier and M. Spira, Neutral Higgs boson pair production at hadron colliders: QCD corrections, Phys. Rev. D 58 (1998) 115012 [hep-ph/9805244] [INSPIRE].ADSGoogle Scholar
  16. [16]
    A. Djouadi, W. Kilian, M. Muhlleitner and P.M. Zerwas, Production of neutral Higgs boson pairs at LHC, Eur. Phys. J. C 10 (1999) 45 [hep-ph/9904287] [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    T. Plehn, M. Spira and P.M. Zerwas, Pair production of neutral Higgs particles in gluon-gluon collisions, Nucl. Phys. B 479 (1996) 46 [Erratum ibid. B 531 (1998) 655] [hep-ph/9603205] [INSPIRE].
  18. [18]
    U. Baur, T. Plehn and D.L. Rainwater, Determining the Higgs boson selfcoupling at hadron colliders, Phys. Rev. D 67 (2003) 033003 [hep-ph/0211224] [INSPIRE].ADSGoogle Scholar
  19. [19]
    U. Baur, T. Plehn and D.L. Rainwater, Probing the Higgs selfcoupling at hadron colliders using rare decays, Phys. Rev. D 69 (2004) 053004 [hep-ph/0310056] [INSPIRE].ADSGoogle Scholar
  20. [20]
    M.J. Dolan, C. Englert and M. Spannowsky, Higgs self-coupling measurements at the LHC, JHEP 10 (2012) 112 [arXiv:1206.5001] [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    J. Baglio et al., The measurement of the Higgs self-coupling at the LHC: theoretical status, JHEP 04 (2013) 151 [arXiv:1212.5581] [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    A.J. Barr, M.J. Dolan, C. Englert and M. Spannowsky, Di-Higgs final states augMT2ed - selecting hh events at the high luminosity LHC, Phys. Lett. B 728 (2014) 308 [arXiv:1309.6318] [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    M.J. Dolan, C. Englert, N. Greiner and M. Spannowsky, Further on up the road: hhjj production at the LHC, Phys. Rev. Lett. 112 (2014) 101802 [arXiv:1310.1084] [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson pair production at the LHC in the \( b\overline{b} \) W + W channel, Phys. Rev. D 87 (2013) 011301 [arXiv:1209.1489] [INSPIRE].ADSGoogle Scholar
  25. [25]
    F. Goertz, A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs Boson self-coupling measurements using ratios of cross sections, JHEP 06 (2013) 016 [arXiv:1301.3492] [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    F. Goertz, A. Papaefstathiou, L.L. Yang and J. Zurita, Measuring the Higgs boson self-coupling at the LHC using ratios of cross sections, arXiv:1309.3805 [INSPIRE].
  27. [27]
    D. de Florian and J. Mazzitelli, Higgs Boson Pair Production at Next-to-Next-to-Leading Order in QCD, Phys. Rev. Lett. 111 (2013) 201801 [arXiv:1309.6594] [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    D. de Florian and J. Mazzitelli, Two-loop virtual corrections to Higgs pair production, Phys. Lett. B 724 (2013) 306 [arXiv:1305.5206] [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    J. Cao, Z. Heng, L. Shang, P. Wan and J.M. Yang, Pair Production of a 125 GeV Higgs Boson in MSSM and NMSSM at the LHC, JHEP 04 (2013) 134 [arXiv:1301.6437] [INSPIRE].CrossRefADSGoogle Scholar
  30. [30]
    R.S. Gupta, H. Rzehak and J.D. Wells, How well do we need to measure the Higgs boson mass and self-coupling?, Phys. Rev. D 88 (2013) 055024 [arXiv:1305.6397] [INSPIRE].ADSGoogle Scholar
  31. [31]
    D.T. Nhung, M. Muhlleitner, J. Streicher and K. Walz, Higher Order Corrections to the Trilinear Higgs Self-Couplings in the Real NMSSM, JHEP 11 (2013) 181 [arXiv:1306.3926] [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    U. Ellwanger, Higgs pair production in the NMSSM at the LHC, JHEP 08 (2013) 077 [arXiv:1306.5541] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    J.M. No and M. Ramsey-Musolf, Probing the Higgs Portal at the LHC Through Resonant di-Higgs Production, Phys. Rev. D 89 (2014) 095031 [arXiv:1310.6035] [INSPIRE].ADSGoogle Scholar
  34. [34]
    M. McCullough, An Indirect Model-Dependent Probe of the Higgs Self-Coupling, arXiv:1312.3322 [INSPIRE].
  35. [35]
    P. Maierhöfer and A. Papaefstathiou, Higgs Boson pair production merged to one jet, JHEP 03 (2014) 126 [arXiv:1401.0007] [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    W. Hollik and S. Penaranda, Yukawa coupling quantum corrections to the selfcouplings of the lightest MSSM Higgs boson, Eur. Phys. J. C 23 (2002) 163 [hep-ph/0108245] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    M.N. Dubinin and A.V. Semenov, Triple and quartic interactions of Higgs bosons in the general two Higgs doublet model, hep-ph/9812246 [INSPIRE].
  38. [38]
    ILD collaboration, J. Tian and K. Fujii, Measurement of Higgs couplings and self-coupling at the ILC, PoS(EPS-HEP 2013)316 [arXiv:1311.6528] [INSPIRE].
  39. [39]
    S. Dawson et al., Working Group Report: Higgs Boson, arXiv:1310.8361 [INSPIRE].
  40. [40]
    R. Lafaye, D.J. Miller, M. Muhlleitner and S. Moretti, Double Higgs production at TeV colliders in the minimal supersymmetric standard model, hep-ph/0002238 [INSPIRE].
  41. [41]
    P. Osland and P.N. Pandita, Multiple Higgs production and measurement of Higgs trilinear couplings in the MSSM, hep-ph/9911295 [INSPIRE].
  42. [42]
    P. Osland, Higgs boson production in e + e and e e collisions, Acta Phys. Polon. B 30 (1999) 1967 [hep-ph/9903301] [INSPIRE].ADSGoogle Scholar
  43. [43]
    M. Brucherseifer, R. Gavin and M. Spira, MSSM Higgs Self-Couplings: Two-Loop \( \mathcal{O}\left({\alpha}_t{\alpha}_s\right) \) Corrections, arXiv:1309.3140 [INSPIRE].
  44. [44]
    W. Yao, Studies of measuring Higgs self-coupling with HH\( b\overline{b} \)γγ at the future hadron colliders, arXiv:1308.6302 [INSPIRE].
  45. [45]
    R. Frederix et al., Higgs pair production at the LHC with NLO and parton-shower effects, Phys. Lett. B 732 (2014) 142 [arXiv:1401.7340] [INSPIRE].CrossRefADSGoogle Scholar
  46. [46]
    M.H. Seymour, Searches for new particles using cone and cluster jet algorithms: A comparative study, Z. Phys. C 62 (1994) 127 [INSPIRE].ADSGoogle Scholar
  47. [47]
    U. Baur, T. Plehn and D.L. Rainwater, Examining the Higgs boson potential at lepton and hadron colliders: A Comparative analysis, Phys. Rev. D 68 (2003) 033001 [hep-ph/0304015] [INSPIRE].ADSGoogle Scholar
  48. [48]
    M.J. Dolan, C. Englert and M. Spannowsky, New physics in LHC Higgs boson pair production, Phys. Rev. D 87 (2013) 055002 [arXiv:1210.8166] [INSPIRE].ADSGoogle Scholar
  49. [49]
    M. Gouzevitch et al., Scale-invariant resonance tagging in multijet events and new physics in Higgs pair production, JHEP 07 (2013) 148 [arXiv:1303.6636] [INSPIRE].CrossRefADSGoogle Scholar
  50. [50]
    A. Efrati and Y. Nir, What if λhhh ≠ 3m h2/v, arXiv:1401.0935 [INSPIRE].
  51. [51]
    ATLAS collaboration, A search for resonant Higgs-pair production in the \( b\overline{b} b\overline{b} \) final state in pp collisions at \( \sqrt{s} \) = 8 TeV, ATLAS-CONF-2014-005 (2014).
  52. [52]
    B. Cooper, N. Konstantinidis, L. Lambourne and D. Wardrope, Boosted hh\( b\overline{b} b\overline{b} \) : A new topology in searches for TeV-scale resonances at the LHC, Phys. Rev. D 88 (2013) 114005 [arXiv:1307.0407] [INSPIRE].ADSGoogle Scholar
  53. [53]
    C. Han, X. Ji, L. Wu, P. Wu and J.M. Yang, Higgs pair production with SUSY QCD correction: revisited under current experimental constraints, JHEP 04 (2014) 003 [arXiv:1307.3790] [INSPIRE].CrossRefADSGoogle Scholar
  54. [54]
    D.Y. Shao, C.S. Li, H.T. Li and J. Wang, Threshold resummation effects in Higgs boson pair production at the LHC, JHEP 07 (2013) 169 [arXiv:1301.1245] [INSPIRE].CrossRefADSGoogle Scholar
  55. [55]
    Y. Philippov, Yukawa radiative corrections to the trilinear self-couplings of neutral CP-even Higgs bosons and decay width Gamma (Hhh) in the MSSM, Phys. Atom. Nucl. 70 (2007) 1288 [hep-ph/0611260] [INSPIRE].CrossRefADSGoogle Scholar
  56. [56]
    M.V. Dolgopolov and Y. Philippov, The trilinear neutral Higgs selfcouplings in the MSSM: Complete one loop analysis, hep-ph/0310018 [INSPIRE].
  57. [57]
    F. Boudjema and A. Semenov, Measurements of the SUSY Higgs selfcouplings and the reconstruction of the Higgs potential, Phys. Rev. D 66 (2002) 095007 [hep-ph/0201219] [INSPIRE].ADSGoogle Scholar
  58. [58]
    J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].CrossRefADSGoogle Scholar
  59. [59]
    D.E. Soper and M. Spannowsky, Finding physics signals with shower deconstruction, Phys. Rev. D 84 (2011) 074002 [arXiv:1102.3480] [INSPIRE].ADSGoogle Scholar
  60. [60]
    D.E. Soper and M. Spannowsky, Finding top quarks with shower deconstruction, Phys. Rev. D 87 (2013) 054012 [arXiv:1211.3140] [INSPIRE].ADSGoogle Scholar
  61. [61]
    D.E. Soper and M. Spannowsky, Finding physics signals with event deconstruction, arXiv:1402.1189 [INSPIRE].
  62. [62]
    R.S. Bartoldus et al., Technical Design Report for the Phase-I Upgrade of the ATLAS TDAQ System, CERN-LHCC-2013-018.
  63. [63]
    ATLAS collaboration, Search for the Standard Model Higgs boson produced in association with top quarks and decaying to bb in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector at the LHC, ATLAS-CONF-2014-011 (2014).
  64. [64]
    J. Thaler and K. Van Tilburg, Identifying Boosted Objects with N-subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [INSPIRE].CrossRefADSGoogle Scholar
  65. [65]
    D.E. Soper and M. Spannowsky, Combining subjet algorithms to enhance ZH detection at the LHC, JHEP 08 (2010) 029 [arXiv:1005.0417] [INSPIRE].CrossRefADSGoogle Scholar
  66. [66]
    M. Backovic, J. Juknevich and G. Perez, Boosting the Standard Model Higgs Signal with the Template Overlap Method, JHEP 07 (2013) 114 [arXiv:1212.2977] [INSPIRE].CrossRefADSGoogle Scholar
  67. [67]
    L.G. Almeida et al., Three-particle templates for a boosted Higgs boson, Phys. Rev. D 85 (2012) 114046 [arXiv:1112.1957] [INSPIRE].ADSGoogle Scholar
  68. [68]
    S.D. Ellis, A. Hornig, T.S. Roy, D. Krohn and M.D. Schwartz, Qjets: A Non-Deterministic Approach to Tree-Based Jet Substructure, Phys. Rev. Lett. 108 (2012) 182003 [arXiv:1201.1914] [INSPIRE].CrossRefADSGoogle Scholar
  69. [69]
    M. Bahr et al., HERWIG++ Physics and Manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].CrossRefADSGoogle Scholar
  70. [70]
    K. Arnold et al., HERWIG++ 2.6 Release Note, arXiv:1205.4902 [INSPIRE].
  71. [71]
    J. Bellm et al., HERWIG++ 2.7 Release Note, arXiv:1310.6877 [INSPIRE].
  72. [72]
  73. [73]
    M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [INSPIRE].CrossRefADSGoogle Scholar
  74. [74]
    S. Frixione, F. Stoeckli, P. Torrielli and B.R. Webber, NLO QCD corrections in HERWIG++ with MC@NLO, JHEP 01 (2011) 053 [arXiv:1010.0568] [INSPIRE].CrossRefADSGoogle Scholar
  75. [75]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].CrossRefADSGoogle Scholar
  76. [76]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, arXiv:1405.0301 [INSPIRE].
  77. [77]
    T. Binoth et al., Next-to-leading order QCD corrections to pp\( b\overline{b} b\overline{b} \) + X at the LHC: the quark induced case, Phys. Lett. B 685 (2010) 293 [arXiv:0910.4379] [INSPIRE].CrossRefADSGoogle Scholar
  78. [78]
    N. Greiner, A. Guffanti, T. Reiter and J. Reuter, NLO QCD corrections to the production of two bottom-antibottom pairs at the LHC, Phys. Rev. Lett. 107 (2011) 102002 [arXiv:1105.3624] [INSPIRE].CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Danilo Enoque Ferreira de Lima
    • 1
    • 3
  • Andreas Papaefstathiou
    • 2
  • Michael Spannowsky
    • 3
  1. 1.School of Physics and AstronomyUniversity of GlasgowGlasgowUnited Kingdom
  2. 2.Physik-Institut, Universität ZürichZürichSwitzerland
  3. 3.Institute for Particle Physics PhenomenologyDurham UniversityDurhamUnited Kingdom

Personalised recommendations