Higgs vacuum stability from the dark matter portal

  • Valentin V. Khoze
  • Christopher McCabe
  • Gunnar Ro
Open Access


We consider classically scale-invariant extensions of the Standard Model (CSI ESM ) which stabilise the Higgs potential and have good dark matter candidates. In this framework all mass scales, including electroweak and dark matter masses, are generated dynamically and have a common origin. We consider Abelian and non-Abelian hidden sectors portally coupled to the SM with and without a real singlet scalar. We perform a careful analysis of RG running to determine regions in the parameter space where the SM Higgs vacuum is stabilised. After combining this with the LHC Higgs constraints, in models without a singlet, none of the regained parameter space in Abelian ESMs, and only a small section in the non-Abelian ESM survives. However, in all singlet-extended models we find that the Higgs vacuum can be stabilised in all of the parameter space consistent with the LHC constraints. These models naturally contain two dark matter candidates: the real singlet and the dark gauge boson in non-Abelian models. We determine the viable range of parameters in the CSI ESM framework by computing the relic abundance, imposing direct detection constraints and combining with the LHC Higgs constraints. In addition to being instrumental in Higgs stabilisation, we find that the singlet component is required to explain the observed dark matter density.


Higgs Physics Beyond Standard Model Cosmology of Theories beyond the SM 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].ADSGoogle Scholar
  4. [4]
    K.A. Meissner and H. Nicolai, Conformal symmetry and the Standard Model, Phys. Lett. B 648 (2007) 312 [hep-th/0612165] [INSPIRE].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    C. Englert, J. Jaeckel, V.V. Khoze and M. Spannowsky, Emergence of the electroweak scale through the Higgs portal, JHEP 04 (2013) 060 [arXiv:1301.4224] [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    V.V. Khoze and G. Ro, Leptogenesis and neutrino oscillations in the classically conformal Standard Model with the Higgs portal, JHEP 10 (2013) 075 [arXiv:1307.3764] [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    S. Iso, N. Okada and Y. Orikasa, Classically conformal B L extended Standard Model, Phys. Lett. B 676 (2009) 81 [arXiv:0902.4050] [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    T. Hambye and A. Strumia, Dynamical generation of the weak and dark matter scale, Phys. Rev. D 88 (2013) 055022 [arXiv:1306.2329] [INSPIRE].ADSGoogle Scholar
  9. [9]
    C.D. Carone and R. Ramos, Classical scale-invariance, the electroweak scale and vector dark matter, Phys. Rev. D 88 (2013) 055020 [arXiv:1307.8428] [INSPIRE].ADSGoogle Scholar
  10. [10]
    V.V. Khoze, Inflation and dark matter in the Higgs portal of classically scale invariant Standard Model, JHEP 11 (2013) 215 [arXiv:1308.6338] [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    R. Hempfling, The next-to-minimal Coleman-Weinberg model, Phys. Lett. B 379 (1996) 153 [hep-ph/9604278] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    W.A. Bardeen, On naturalness in the Standard Model, FERMILAB-CONF-95-391, Fermilab, Batavia U.S.A. (1995).
  13. [13]
    W.-F. Chang, J.N. Ng and J.M.S. Wu, Shadow Higgs from a scale-invariant hidden U(1)s model, Phys. Rev. D 75 (2007) 115016 [hep-ph/0701254] [INSPIRE].ADSGoogle Scholar
  14. [14]
    R. Foot, A. Kobakhidze, K. McDonald and R. Volkas, Neutrino mass in radiatively-broken scale-invariant models, Phys. Rev. D 76 (2007) 075014 [arXiv:0706.1829] [INSPIRE].ADSGoogle Scholar
  15. [15]
    R. Foot, A. Kobakhidze, K.L. McDonald and R.R. Volkas, A solution to the hierarchy problem from an almost decoupled hidden sector within a classically scale invariant theory, Phys. Rev. D 77 (2008) 035006 [arXiv:0709.2750] [INSPIRE].ADSGoogle Scholar
  16. [16]
    M. Holthausen, M. Lindner and M.A. Schmidt, Radiative symmetry breaking of the minimal left-right symmetric model, Phys. Rev. D 82 (2010) 055002 [arXiv:0911.0710] [INSPIRE].ADSGoogle Scholar
  17. [17]
    S. Iso and Y. Orikasa, TeV scale B-L model with a flat Higgs potential at the Planck scalein view of the hierarchy problem, Prog. Theor. Exp. Phys. 2013 (2013) 023B08 [arXiv:1210.2848] [INSPIRE].Google Scholar
  18. [18]
    L. Bian, R. Ding and B. Zhu, Two component Higgs-portal dark matter, Phys. Lett. B 728 (2014) 105 [arXiv:1308.3851] [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    J. Guo and Z. Kang, Higgs naturalness and dark matter stability by scale invariance, arXiv:1401.5609 [INSPIRE].
  20. [20]
    T. Hambye and M.H.G. Tytgat, Electroweak symmetry breaking induced by dark matter, Phys. Lett. B 659 (2008) 651 [arXiv:0707.0633] [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    E. Gabrielli et al., Towards completing the Standard Model: vacuum stability, EWSB and dark matter, Phys. Rev. D 89 (2014) 015017 [arXiv:1309.6632] [INSPIRE].ADSGoogle Scholar
  22. [22]
    M. Holthausen, J. Kubo, K.S. Lim and M. Lindner, Electroweak and conformal symmetry breaking by a strongly coupled hidden sector, JHEP 12 (2013) 076 [arXiv:1310.4423] [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    C.T. Hill, Is the Higgs boson associated with Coleman-Weinberg dynamical symmetry breaking?, Phys. Rev. D 89 (2014) 073003 [arXiv:1401.4185] [INSPIRE].ADSGoogle Scholar
  24. [24]
    G. Marques Tavares, M. Schmaltz and W. Skiba, Higgs mass naturalness and scale invariance in the UV, Phys. Rev. D 89 (2014) 015009 [arXiv:1308.0025] [INSPIRE].ADSGoogle Scholar
  25. [25]
    S. Abel and A. Mariotti, Novel Higgs potentials from gauge mediation of exact scale breaking, arXiv:1312.5335 [INSPIRE].
  26. [26]
    M. Quirós, Finite temperature field theory and phase transitions, hep-ph/9901312 [INSPIRE].
  27. [27]
    O. Lebedev, On stability of the electroweak vacuum and the Higgs portal, Eur. Phys. J. C 72 (2012) 2058 [arXiv:1203.0156] [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    J. Elias-Miro, J.R. Espinosa, G.F. Giudice, H.M. Lee and A. Strumia, Stabilization of the electroweak vacuum by a scalar threshold effect, JHEP 06 (2012) 031 [arXiv:1203.0237] [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    R.N. Mohapatra and R.E. Marshak, Local B-L symmetry of electroweak interactions, Majorana neutrinos and neutron oscillations, Phys. Rev. Lett. 44 (1980) 1316 [Erratum ibid. 44 (1980) 1643] [INSPIRE].
  30. [30]
    R.E. Marshak and R.N. Mohapatra, Quark-lepton symmetry and B-L as the U(1) generator of the electroweak symmetry group, Phys. Lett. B 91 (1980) 222 [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    C. Wetterich, Neutrino masses and the scale of B-L violation, Nucl. Phys. B 187 (1981) 343 [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    E.K. Akhmedov, V.A. Rubakov and A.Y. Smirnov, Baryogenesis via neutrino oscillations, Phys. Rev. Lett. 81 (1998) 1359 [hep-ph/9803255] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    L. Basso, S. Moretti and G.M. Pruna, A renormalisation group equation study of the scalar sector of the minimal B-L extension of the Standard Model, Phys. Rev. D 82 (2010) 055018 [arXiv:1004.3039] [INSPIRE].ADSGoogle Scholar
  34. [34]
    D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089 [arXiv:1307.3536] [INSPIRE].CrossRefMathSciNetADSGoogle Scholar
  35. [35]
    G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    M. Sher, Electroweak Higgs potentials and vacuum stability, Phys. Rept. 179 (1989) 273 [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    M. Lindner, Implications of triviality for the Standard Model, Z. Phys. C 31 (1986) 295 [INSPIRE].ADSGoogle Scholar
  38. [38]
    M. Gonderinger, Y. Li, H. Patel and M.J. Ramsey-Musolf, Vacuum stability, perturbativity and scalar singlet dark matter, JHEP 01 (2010) 053 [arXiv:0910.3167] [INSPIRE].CrossRefADSGoogle Scholar
  39. [39]
    O. Lebedev and H.M. Lee, Higgs portal inflation, Eur. Phys. J. C 71 (2011) 1821 [arXiv:1105.2284] [INSPIRE].CrossRefADSGoogle Scholar
  40. [40]
    S.A. Abel, C.-S. Chu, J. Jaeckel and V.V. Khoze, SUSY breaking by a metastable ground state: why the early universe preferred the non-supersymmetric vacuum, JHEP 01 (2007) 089 [hep-th/0610334] [INSPIRE].CrossRefMathSciNetADSGoogle Scholar
  41. [41]
    ATLAS collaboration, A particle consistent with the Higgs boson observed with the ATLAS detector at the Large Hadron Collider, Science 338 (2012) 1576 [INSPIRE].CrossRefADSGoogle Scholar
  42. [42]
    CMS collaboration, Search for a Standard Model-like Higgs boson with a mass of up to 1 TeV at the LHC,, CERN, Geneva Switzerland (2013).
  43. [43]
    CMS collaboration, Measurement of the properties of a Higgs boson in the four-lepton final state,, CERN, Geneva Switzerland (2014).
  44. [44]
    ATLAS collaboration, Search for high-mass dilepton resonances in 20 fb−1 of pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS experiment, ATLAS-CONF-2013-017, CERN, Geneva Switzerland (2013).
  45. [45]
    CMS collaboration, Search for resonances in the dilepton mass distribution in pp collisions at \( \sqrt{s} \) = 8 TeV, CMS-PAS-EXO-12-061, CERN, Geneva Switzerland (2012).
  46. [46]
    T. Hambye, Hidden vector dark matter, JHEP 01 (2009) 028 [arXiv:0811.0172] [INSPIRE].CrossRefADSGoogle Scholar
  47. [47]
    T. Hambye and M.H.G. Tytgat, Confined hidden vector dark matter, Phys. Lett. B 683 (2010) 39 [arXiv:0907.1007] [INSPIRE].CrossRefADSGoogle Scholar
  48. [48]
    C. Arina, T. Hambye, A. Ibarra and C. Weniger, Intense gamma-ray lines from hidden vector dark matter decay, JCAP 03 (2010) 024 [arXiv:0912.4496] [INSPIRE].CrossRefADSGoogle Scholar
  49. [49]
    J. Evslin and S.B. Gudnason, Dwarf galaxy sized monopoles as dark matter?, arXiv:1202.0560 [INSPIRE].
  50. [50]
    V. Silveira and A. Zee, Scalar phantoms, Phys. Lett. B 161 (1985) 136 [INSPIRE].CrossRefMathSciNetADSGoogle Scholar
  51. [51]
    J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].ADSGoogle Scholar
  52. [52]
    C.P. Burgess, M. Pospelov and T. ter Veldhuis, The minimal model of nonbaryonic dark matter: a singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].CrossRefADSGoogle Scholar
  53. [53]
    Y. Mambrini, Higgs searches and singlet scalar dark matter: combined constraints from XENON100 and the LHC, Phys. Rev. D 84 (2011) 115017 [arXiv:1108.0671] [INSPIRE].ADSGoogle Scholar
  54. [54]
    A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, Phys. Lett. B 709 (2012) 65 [arXiv:1112.3299] [INSPIRE].CrossRefADSGoogle Scholar
  55. [55]
    I. Low, P. Schwaller, G. Shaughnessy and C.E.M. Wagner, The dark side of the Higgs boson, Phys. Rev. D 85 (2012) 015009 [arXiv:1110.4405] [INSPIRE].ADSGoogle Scholar
  56. [56]
    K. Cheung, Y.-L.S. Tsai, P.-Y. Tseng, T.-C. Yuan and A. Zee, Global study of the simplest scalar phantom dark matter model, JCAP 10 (2012) 042 [arXiv:1207.4930] [INSPIRE].CrossRefADSGoogle Scholar
  57. [57]
    J.M. Cline, K. Kainulainen, P. Scott and C. Weniger, Update on scalar singlet dark matter, Phys. Rev. D 88 (2013) 055025 [arXiv:1306.4710] [INSPIRE].ADSGoogle Scholar
  58. [58]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [INSPIRE].
  59. [59]
    P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].CrossRefADSGoogle Scholar
  60. [60]
    F. D’Eramo and J. Thaler, Semi-annihilation of dark matter, JHEP 06 (2010) 109 [arXiv:1003.5912] [INSPIRE].CrossRefADSGoogle Scholar
  61. [61]
    G. Bélanger, K. Kannike, A. Pukhov and M. Raidal, Impact of semi-annihilations on dark matter phenomenologyan example of Z N symmetric scalar dark matter, JCAP 04 (2012) 010 [arXiv:1202.2962] [INSPIRE].CrossRefGoogle Scholar
  62. [62]
    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].CrossRefADSGoogle Scholar
  63. [63]
    P. Cushman et al., Working group report: WIMP dark matter direct detection, arXiv:1310.8327 [INSPIRE].
  64. [64]
    H.-Y. Cheng and C.-W. Chiang, Revisiting scalar and pseudoscalar couplings with nucleons, JHEP 07 (2012) 009 [arXiv:1202.1292] [INSPIRE].CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Valentin V. Khoze
    • 1
  • Christopher McCabe
    • 1
  • Gunnar Ro
    • 1
  1. 1.Institute for Particle Physics PhenomenologyDurham UniversityDurhamU.K.

Personalised recommendations