Anti-helium from dark matter annihilations

  • Marco Cirelli
  • Nicolao Fornengo
  • Marco Taoso
  • Andrea Vittino
Open Access


Galactic Dark Matter (DM) annihilations can produce cosmic-ray anti-nuclei via the nuclear coalescence of the anti-protons and anti-neutrons originated directly from the annihilation process. Since anti-deuterons have been shown to offer a distinctive DM signal, with potentially good prospects for detection in large portions of the DM-particle parameter space, we explore here the production of heavier anti-nuclei, specifically anti-helium. Even more than for anti-deuterons, the DM-produced anti-He flux can be mostly prominent over the astrophysical anti-He background at low kinetic energies, typically below 3-5 GeV/n. However, the larger number of anti-nucleons involved in the formation process makes the anti-He flux extremely small. We therefore explore, for a few DM benchmark cases, whether the yield is sufficient to allow for anti-He detection in current-generation experiments, such as Ams-02. We account for the uncertainties due to the propagation in the Galaxy and to the uncertain details of the coalescence process, and we consider the constraints already imposed by anti-proton searches. We find that only for very optimistic configurations might it be possible to achieve detection with current generation detectors. We estimate that, in more realistic configurations, an increase in experimental sensitivity at low kinetic energies of about a factor of 500-1000 would allow to start probing DM through the rare cosmic anti-He production.


Cosmology of Theories beyond the SM Beyond Standard Model 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    F. Donato, N. Fornengo and P. Salati, Anti-deuterons as a signature of supersymmetric dark matter, Phys. Rev. D 62 (2000) 043003 [hep-ph/9904481] [INSPIRE].ADSGoogle Scholar
  2. [2]
    H. Baer and S. Profumo, Low energy antideuterons: shedding light on dark matter, JCAP 12 (2005) 008 [astro-ph/0510722] [INSPIRE].CrossRefADSGoogle Scholar
  3. [3]
    F. Donato, N. Fornengo and D. Maurin, Antideuteron fluxes from dark matter annihilation in diffusion models, Phys. Rev. D 78 (2008) 043506 [arXiv:0803.2640] [INSPIRE].ADSGoogle Scholar
  4. [4]
    C.B. Brauninger and M. Cirelli, Anti-deuterons from heavy Dark Matter, Phys. Lett. B 678 (2009) 20 [arXiv:0904.1165] [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    A. Ibarra and D. Tran, Antideuterons from Dark Matter Decay, JCAP 06 (2009) 004 [arXiv:0904.1410] [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    Y. Cui, J.D. Mason and L. Randall, General Analysis of Antideuteron Searches for Dark Matter, JHEP 11 (2010) 017 [arXiv:1006.0983] [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    L.A. Dal and M. Kachelriess, Antideuterons from dark matter annihilations and hadronization model dependence, Phys. Rev. D 86 (2012) 103536 [arXiv:1207.4560] [INSPIRE].ADSGoogle Scholar
  8. [8]
    A. Ibarra and S. Wild, Prospects of antideuteron detection from dark matter annihilations or decays at AMS-02 and GAPS, JCAP 02 (2013) 021 [arXiv:1209.5539] [INSPIRE].CrossRefADSGoogle Scholar
  9. [9]
    M. Kadastik, M. Raidal and A. Strumia, Enhanced anti-deuteron Dark Matter signal and the implications of PAMELA, Phys. Lett. B 683 (2010) 248 [arXiv:0908.1578] [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    N. Fornengo, L. Maccione and A. Vittino, Dark matter searches with cosmic antideuterons: status and perspectives, JCAP 09 (2013) 031 [arXiv:1306.4171] [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    A. Kounine, Status of the AMS Experiment, arXiv:1009.5349 [INSPIRE].
  12. [12]
    F.R. Spada, Antimatter and DM Search in Space With AMS-02, in Proceedings of the 28th International Conference on Physics in Collision, Perugia, 2008, eConf C 080625 (2008) 0023.Google Scholar
  13. [13]
    AMS-02 collaboration, F.R. Spada, Antimatter and Dark Matter search in space with AMS-02, arXiv:0810.3831 [INSPIRE].
  14. [14]
    J.I. Kapusta, Mechanisms for deuteron production in relativistic nuclear collisions, Phys. Rev. C 21 (1980) 1301 [INSPIRE].ADSGoogle Scholar
  15. [15]
    L.P. Csernai and J.I. Kapusta, Entropy and Cluster Production in Nuclear Collisions, Phys. Rept. 131 (1986) 223 [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    A. Schwarzschild and C. Zupancic, Production of Tritons, Deuterons, Nucleons and Mesons by 30-GeV Protons on A-1, Be and Fe Targets, Phys. Rev. 129 (1963) 854 [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    R. Duperray, B. Baret, D. Maurin, G. Boudoul, A. Barrau et al., Flux of light antimatter nuclei near Earth, induced by cosmic rays in the Galaxy and in the atmosphere, Phys. Rev. D 71 (2005) 083013 [astro-ph/0503544] [INSPIRE].ADSGoogle Scholar
  18. [18]
    P. Chardonnet, J. Orloff and P. Salati, The Production of antimatter in our galaxy, Phys. Lett. B 409 (1997) 313 [astro-ph/9705110] [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    Y. Antipov, S.P. Denisov, S.V. Donskov, Y. Gorin, V.A. Kachanov et al., Observation of antihelium-3, Nucl. Phys. B 31 (1971) 235 [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    N.K. Vishnevsky, M.I. Grachev, V.I. Rykalin, V.G. Lapshin, V.I. Solyanik et al., Observation of antitritium, Yad. Fiz. 20 (1974) 694 [INSPIRE].Google Scholar
  22. [22]
    W. Bozzoli, A. Bussiere, G. Giacomelli, E. Lesquoy, R. Meunier et al., Production of d, T, 3 He, \( \overline{d} \) , Anti-t and Anti- 3 He by 200-GeV Protons, Nucl. Phys. B 144 (1978) 317 [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    A. Bussiere, G. Giacomelli, E. Lesquoy, R. Meunier, L. Moscoso et al., Particle Production and Search for Longlived Particles in 200-GeV/c to 240-GeV/c ProtonNucleon Collisions, Nucl. Phys. B 174 (1980) 1 [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    M.C. Lemaire, S. Nagamiya, S. Schnetzer, H. Steiner and I. Tanihata, Composite particle emission in relativistic heavy ion collisions, Phys. Lett. B 85 (1979) 38.CrossRefADSGoogle Scholar
  25. [25]
    ALEPH collaboration, S. Schael et al., Deuteron and anti-deuteron production in e + e collisions at the Z resonance, Phys. Lett. B 639 (2006) 192 [hep-ex/0604023] [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    M. Cirelli, G. Corcella, A. Hektor, G. Hutsi, M. Kadastik et al., PPPC 4 DM ID: A Poor Particle Physicist Cookbook for Dark Matter Indirect Detection, JCAP 03 (2011) 051 [Erratum ibid. 1210 (2012) E01] [arXiv:1012.4515] [INSPIRE].
  27. [27]
    R. Duperray, Production and propagation de noyaux légers dantimatière dans la Galaxie, PhD thesis, University of Grenoble, 2004.Google Scholar
  28. [28]
    F. Donato, N. Fornengo, D. Maurin and P. Salati, Antiprotons in cosmic rays from neutralino annihilation, Phys. Rev. D 69 (2004) 063501 [astro-ph/0306207] [INSPIRE].ADSGoogle Scholar
  29. [29]
    M. Cirelli and G. Giesen, Antiprotons from Dark Matter: Current constraints and future sensitivities, JCAP 04 (2013) 015 [arXiv:1301.7079] [INSPIRE].CrossRefADSGoogle Scholar
  30. [30]
    N. Fornengo, L. Maccione and A. Vittino, Constraints on particle dark matter from cosmic-ray antiprotons, JCAP 04 (2014) 003 [arXiv:1312.3579] [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    PAMELA collaboration, O. Adriani et al., PAMELA results on the cosmic-ray antiproton flux from 60 MeV to 180 GeV in kinetic energy, Phys. Rev. Lett. 105 (2010) 121101 [arXiv:1007.0821] [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    T.K. Gaisser and E.H. Levy, Astrophysical Implications of Cosmic Ray anti-Protons, Phys. Rev. D 10 (1974) 1731 [INSPIRE].ADSGoogle Scholar
  33. [33]
    AMS collaboration, J. Alcaraz et al., Search for anti-helium in cosmic rays, Phys. Lett. B 461 (1999) 387 [hep-ex/0002048] [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    K. Abe, H. Fuke, S. Haino, T. Hams, M. Hasegawa et al., Search for Antihelium with the BESS-Polar Spectrometer, Phys. Rev. Lett. 108 (2012) 131301 [arXiv:1201.2967] [INSPIRE].CrossRefADSGoogle Scholar
  35. [35]
    A.G. Mayorov, A.M. Galper, O. Adriani, G.A. Bazilevskaya, G. Barbarino et al., Upper limit on the antihelium flux in primary cosmic rays, JETP Lett. 93 (2011) 628 [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    PAMELA collaboration, O. Adriani et al., PAMELA Measurements of Cosmic-ray Proton and Helium Spectra, Science 332 (2011) 69 [arXiv:1103.4055] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    AMS collaboration, V. Choutko, Precision Measurement of the Cosmic Ray Helium Flux with AMS Experiment,, in Proceedings of the 33rd International Cosmic Ray Conference, Rio de Janeiro, 2013.Google Scholar
  38. [38]
    K. Mori, C.J. Hailey, E.A. Baltz, W.W. Craig, M. Kamionkowski et al., A Novel antimatter detector based on x-ray deexcitation of exotic atoms, Astrophys. J. 566 (2002) 604 [astro-ph/0109463] [INSPIRE].CrossRefADSGoogle Scholar
  39. [39]
    C.J. Hailey, W.W. Craig, F.A. Harrison, J. Hong, K. Mori et al., Development of the gaseous antiparticle spectrometer for space - based antimatter detection, Nucl. Instrum. Meth. B 214 (2004) 122 [astro-ph/0306589] [INSPIRE].CrossRefADSGoogle Scholar
  40. [40]
    C.J. Hailey, T. Aramaki, W.W. Craig, L. Fabris, F. Gahbauer et al., Accelerator testing of the general antiparticle spectrometer, a novel approach to indirect dark matter detection, JCAP 01 (2006) 007 [astro-ph/0509587] [INSPIRE].CrossRefADSGoogle Scholar
  41. [41]
    J.E. Koglin, T. Aramaki, S.E. Boggs, W.W. Craig, H. Fuke et al., Antideuterons as an indirect dark matter signature: Design and preparation for a balloon-born GAPS experiment, J. Phys. Conf. Ser. 120 (2008) 042011 [INSPIRE].CrossRefADSGoogle Scholar
  42. [42]
    A. Ibarra and S. Wild, Determination of the Cosmic Antideuteron Flux in a Monte Carlo approach, Phys. Rev. D 88 (2013) 023014 [arXiv:1301.3820] [INSPIRE].ADSGoogle Scholar
  43. [43]
    B. Alper, H. Boeggild, P.S.L. Booth, F. Bulos, L.J. Carroll et al., Large angle production of stable particles heavier than the proton and a search for quarks at the CERN intersecting storage rings, Phys. Lett. B 46 (1973) 265 [INSPIRE].CrossRefADSGoogle Scholar
  44. [44]
    British-Scandinavian-MIT collaboration, S. Henning et al., Production of Deuterons and anti-Deuterons in Proton Proton Collisions at the CERN ISR, Lett. Nuovo Cim. 21 (1978) 189 [INSPIRE].CrossRefGoogle Scholar
  45. [45]
    L.A. Dal and A.R. Raklev, Antideuteron Limits on Decaying Dark Matter with a Tuned Formation Model, Phys. Rev. D 89 (2014) 103504 [arXiv:1402.6259] [INSPIRE].ADSGoogle Scholar
  46. [46]
    M.J. Christ, S. Dake, J.H. Derrickson, W.F. Fountain, M. Fuki et al., Cosmic-ray proton and helium spectra: Results from the JACEE Experiment, Astrophys. J. 502 (1998) 278 [INSPIRE].CrossRefADSGoogle Scholar
  47. [47]
    RUNJOB collaboration, V.A. Derbina et al., Cosmic-ray spectra and composition in the energy range of 10-TeV - 1000-TeV per particle obtained by the RUNJOB experiment, Astrophys. J. 628 (2005) L41 [INSPIRE].CrossRefADSGoogle Scholar
  48. [48]
    A.D. Panov A.D. et al, Energy spectra of abundant nuclei of primary cosmic rays from the data of ATIC-2 experiment: Final results, Bull. Russ. Acad. Sci. Phys. 73 (2009) 564.Google Scholar
  49. [49]
    Y.S. Yoon, H.S. Ahn, P.S. Allison, M.G. Bagliesi, J.J. Beatty et al., Cosmic-Ray Proton and Helium Spectra from the First CREAM Flight, Astrophys. J. 728 (2011) 122 [arXiv:1102.2575] [INSPIRE].CrossRefADSGoogle Scholar
  50. [50]
    PAMELA collaboration, O. Adriani et al., PAMELA Measurements of Cosmic-ray Proton and Helium Spectra, Science 332 (2011) 69 [arXiv:1103.4055] [INSPIRE].CrossRefADSGoogle Scholar
  51. [51]
    on Behalf of the AMS-02 collaboration, C. Consolandi, Primary Cosmic Ray Proton Flux Measured by AMS-02, arXiv:1402.0467 [INSPIRE].
  52. [52]
    E. Carlson, A. Coogan, T. Linden, S. Profumo, A. Ibarra et al., Antihelium from Dark Matter, arXiv:1401.2461 [INSPIRE].

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Marco Cirelli
    • 1
  • Nicolao Fornengo
    • 2
    • 3
  • Marco Taoso
    • 1
  • Andrea Vittino
    • 1
    • 2
    • 3
  1. 1.Institut de Physique Théorique, CNRS, URA 2306 & CEA/SaclayGif-sur-YvetteFrance
  2. 2.Department of PhysicsUniversity of TorinoTorinoItaly
  3. 3.INFN - Istituto Nazionale di Fisica Nucleare, Sezione di TorinoTorinoItaly

Personalised recommendations