Advertisement

The kaon semileptonic form factor with near physical domain wall quarks

  • RBC/UKQCD collaboration
  • P. A. Boyle
  • J. M. Flynn
  • N. Garron
  • A. JüttnerEmail author
  • C. T. Sachrajda
  • K. Sivalingam
  • J. M. Zanotti
Article

Abstract

We present a new calculation of the K → π semileptonic form factor at zero momentum transfer in domain wall lattice QCD with N f = 2+1 dynamical quark flavours. By using partially twisted boundary conditions we simulate directly at the phenomenologically relevant point of zero momentum transfer. We perform a joint analysis for all available ensembles which include three different lattice spacings (a = 0.09 – 0.14 fm), large physical volumes (m π L > 3.9) and pion masses as low as 171 MeV. The comprehensive set of simulation points allows for a detailed study of systematic effects leading to the prediction \( f_{+}^{{K\pi }}(0)=0.9670\left( {20} \right)\left( {_{-46}^{+18 }} \right) \), where the first error is statistical and the second error systematic. The result allows us to extract the CKM-matrix element \( \left| {{V_{us }}} \right|=0.2237\left( {_{-8}^{+13 }} \right) \) and confirm first-row CKM-unitarity in the Standard Model at the sub per mille level.

Keywords

Lattice QCD Quark Masses and SM Parameters Kaon Physics Standard Model 

References

  1. [1]
    J. Hardy and I. Towner, Superallowed 0+ → 0+ nuclear beta decays: A New survey with precision tests of the conserved vector current hypothesis and the standard model, Phys. Rev. C 79 (2009) 055502 [arXiv:0812.1202] [INSPIRE].ADSGoogle Scholar
  2. [2]
    M. Antonelli et al., An Evaluation of |V us| and precise tests of the Standard Model from world data on leptonic and semileptonic kaon decays, Eur. Phys. J. C 69 (2010) 399 [arXiv:1005.2323] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    G. Colangelo et al., Review of lattice results concerning low energy particle physics, Eur. Phys. J. C 71 (2011) 1695 [arXiv:1011.4408] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    S. Hashimoto et al., Lattice QCD calculation of \( \overline{B} \)D lepton anti-neutrino decay form-factors at zero recoil, Phys. Rev. D 61 (1999) 014502 [hep-ph/9906376] [INSPIRE].ADSGoogle Scholar
  5. [5]
    D. Becirevic et al., The Kπ vector form-factor at zero momentum transfer on the lattice, Nucl. Phys. B 705 (2005) 339 [hep-ph/0403217] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    P. Boyle, J. Flynn, A. Jüttner, C. Sachrajda and J. Zanotti, Hadronic form factors in Lattice QCD at small and vanishing momentum transfer, JHEP 05 (2007) 016 [hep-lat/0703005] [INSPIRE].Google Scholar
  7. [7]
    RBC-UKQCD collaboration, P. Boyle et al., K → π form factors with reduced model dependence, Eur. Phys. J. C 69 (2010) 159 [arXiv:1004.0886] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    ETM collaboration, V. Lubicz, F. Mescia, S. Simula and C. Tarantino, K → πlν Semileptonic Form Factors from Two-Flavor Lattice QCD, Phys. Rev. D 80 (2009) 111502 [arXiv:0906.4728] [INSPIRE].ADSGoogle Scholar
  9. [9]
    P. Boyle et al., K l3 semileptonic form-factor from 2+1 flavour lattice QCD, Phys. Rev. Lett. 100 (2008) 141601 [arXiv:0710.5136] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    JLQCD collaboration, T. Kaneko et al., Kaon semileptonic form factors in QCD with exact chiral symmetry, PoS(LATTICE2011)284 [arXiv:1112.5259] [INSPIRE].
  11. [11]
    A. Bazavov et al., Kaon semileptonic vector form factor and determination of |V us| using staggered fermions, arXiv:1212.4993 [INSPIRE].
  12. [12]
    G. Amelino-Camelia et al., Physics with the KLOE-2 experiment at the upgraded DAϕNE, Eur. Phys. J. C 68 (2010) 619 [arXiv:1003.3868] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    JLQCD collaboration, N. Tsutsui et al., Kaon semileptonic decay form-factors in two-flavor QCD, PoS(LAT2005)357 [hep-lat/0510068] [INSPIRE].
  14. [14]
    C. Dawson, T. Izubuchi, T. Kaneko, S. Sasaki and A. Soni, Vector form factor in K l3 semileptonic decay with two flavors of dynamical domain-wall quarks, Phys. Rev. D 74 (2006) 114502 [hep-ph/0607162] [INSPIRE].ADSGoogle Scholar
  15. [15]
    ETM collaboration, V. Lubicz, F. Mescia, L. Orifici, S. Simula and C. Tarantino, Improved analysis of the scalar and vector form factors of kaon semileptonic decays with N f = 2 twisted-mass fermions, PoS(LATTICE2010)316 [arXiv:1012.3573] [INSPIRE].
  16. [16]
    RBC and UKQCD collaboration, R. Arthur et al., Domain Wall QCD with Near-Physical Pions, arXiv:1208.4412 [INSPIRE].
  17. [17]
    C. Sachrajda and G. Villadoro, Twisted boundary conditions in lattice simulations, Phys. Lett. B 609 (2005) 73 [hep-lat/0411033] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    P.F. Bedaque and J.-W. Chen, Twisted valence quarks and hadron interactions on the lattice, Phys. Lett. B 616 (2005) 208 [hep-lat/0412023] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    G. de Divitiis, R. Petronzio and N. Tantalo, On the discretization of physical momenta in lattice QCD, Phys. Lett. B 595 (2004) 408 [hep-lat/0405002] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    UKQCD collaboration, J. Flynn, A. Jüttner and C. Sachrajda, A Numerical study of partially twisted boundary conditions, Phys. Lett. B 632 (2006) 313 [hep-lat/0506016] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    Y. Iwasaki and T. Yoshie, Renormalization group improved action for SU(3) lattice gauge theory and the string tension, Phys. Lett. B 143 (1984) 449 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    Y. Iwasaki, Renormalization Group Analysis of Lattice Theories and Improved Lattice Action: Two-Dimensional Nonlinear O(N) σ-model, Nucl. Phys. B 258 (1985) 141 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    D.B. Kaplan, A Method for simulating chiral fermions on the lattice, Phys. Lett. B 288 (1992) 342 [hep-lat/9206013] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    Y. Shamir, Chiral fermions from lattice boundaries, Nucl. Phys. B 406 (1993) 90 [hep-lat/9303005] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    RBC Collaboration, UKQCD collaboration, Y. Aoki et al., Continuum Limit Physics from 2+1 Flavor Domain Wall QCD, Phys. Rev. D 83 (2011) 074508 [arXiv:1011.0892] [INSPIRE].ADSGoogle Scholar
  26. [26]
    RBC-UKQCD collaboration, C. Allton et al., Physical Results from 2+1 Flavor Domain Wall QCD and SU (2) Chiral Perturbation Theory, Phys. Rev. D 78 (2008) 114509 [arXiv:0804.0473] [INSPIRE].ADSGoogle Scholar
  27. [27]
    RBC Collaboration, UKQCD collaboration, C. Allton et al., 2+1 flavor domain wall QCD on a (2 f m)3 lattice: light meson spectroscopy with L s = 16, Phys. Rev. D 76 (2007) 014504 [hep-lat/0701013] [INSPIRE].ADSGoogle Scholar
  28. [28]
    Y. Aoki et al., Continuum Limit of B K from 2+1 Flavor Domain Wall QCD, Phys. Rev. D 84 (2011) 014503 [arXiv:1012.4178] [INSPIRE].ADSGoogle Scholar
  29. [29]
    B. Efron, Bootstrap methods: another look at the jacknife, Ann. Statist. 7 (1979) 1.MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    UKQCD collaboration, M. Foster and C. Michael, Quark mass dependence of hadron masses from lattice QCD, Phys. Rev. D 59 (1999) 074503 [hep-lat/9810021] [INSPIRE].ADSGoogle Scholar
  31. [31]
    UKQCD collaboration, C. McNeile and C. Michael, Decay width of light quark hybrid meson from the lattice, Phys. Rev. D 73 (2006) 074506 [hep-lat/0603007] [INSPIRE].ADSGoogle Scholar
  32. [32]
    P. Boyle, A. Jüttner, C. Kelly and R. Kenway, Use of stochastic sources for the lattice determination of light quark physics, JHEP 08 (2008) 086 [arXiv:0804.1501] [INSPIRE].Google Scholar
  33. [33]
    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  34. [34]
    J. Gasser and H. Leutwyler, Low-Energy Expansion of Meson Form-Factors, Nucl. Phys. B 250 (1985) 517 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M. Ademollo and R. Gatto, Nonrenormalization Theorem for the Strangeness Violating Vector Currents, Phys. Rev. Lett. 13 (1964) 264 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    J. Bijnens and P. Talavera, K(l3) decays in chiral perturbation theory, Nucl. Phys. B 669 (2003) 341 [hep-ph/0303103] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    K. Ghorbani, Chiral and Volume Extrapolation of Pion and Kaon Electromagnetic form Factor within SU (3) ChPT, arXiv:1112.0729 [INSPIRE].
  38. [38]
    K. Ghorbani and H. Ghorbani, Kaon semi-leptonic form factor at zero momentum transfer in finite volume, arXiv:1301.0919 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • RBC/UKQCD collaboration
  • P. A. Boyle
    • 1
  • J. M. Flynn
    • 2
  • N. Garron
    • 3
  • A. Jüttner
    • 2
    Email author
  • C. T. Sachrajda
    • 2
  • K. Sivalingam
    • 1
  • J. M. Zanotti
    • 4
  1. 1.School of Physics & AstronomyUniversity of EdinburghEdinburghU.K.
  2. 2.School of Physics & AstronomyUniversity of SouthamptonSouthhamptonU.K.
  3. 3.School of MathematicsTrinity CollegeDublin 2Ireland
  4. 4.CSSM, School of Chemistry and PhysicsUniversity of AdelaideAdelaideAustralia

Personalised recommendations