The overarching finite symmetry group of Kummer surfaces in the Mathieu group M 24

  • A. TaorminaEmail author
  • K. Wendland


In view of a potential interpretation of the role of the Mathieu group M 24 in the context of strings compactified on K3 surfaces, we develop techniques to combine groups of symmetries from different K3 surfaces to larger ‘overarching’ symmetry groups. We construct a bijection between the full integral homology lattice of K3 and the Niemeier lattice of type \( A_1^{24 } \), which is simultaneously compatible with the finite symplectic automorphism groups of all Kummer surfaces lying on an appropriate path in moduli space connecting the square and the tetrahedral Kummer surfaces. The Niemeier lattice serves to express all these symplectic automorphisms as elements of the Mathieu group M 24, generating the ‘overarching finite symmetry group’ \( {{\left( {{{\mathbb{Z}}_2}} \right)}^4} \)A 7 of Kummer surfaces. This group has order 40320, thus surpassing the size of the largest finite symplectic automorphism group of a K3 surface by orders of magnitude. For every Kummer surface this group contains the group of symplectic automorphisms leaving the Kähler class invariant which is induced from the underlying torus. Our results are in line with the existence proofs of Mukai and Kondo, that finite groups of symplectic automorphisms of K3 are subgroups of one of eleven subgroups of M 23, and we extend their techniques of lattice embeddings for all Kummer surfaces with Kähler class induced from the underlying torus.


Extended Supersymmetry Discrete and Finite Symmetries Conformal Field Models in String Theory 


  1. [1]
    T. Eguchi, H. Ooguri and Y. Tachikawa, Notes on the K3 Surface and the Mathieu group M 24, Exper. Math. 20 (2011) 91 [arXiv:1004.0956] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    O. Alvarez, T. Killingback, M.L. Mangano and P. Windey, String theory and loop space index theorems, Commun. Math. Phys. 111 (1987) 1 [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  3. [3]
    E. Witten, Elliptic genera and quantum field theory, Commun. Math. Phys. 109 (1987) 525 [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  4. [4]
    T. Eguchi, H. Ooguri, A. Taormina and S.-K. Yang, Superconformal Algebras and String Compactification on Manifolds with SU(N) Holonomy, Nucl. Phys. B 315 (1989) 193 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    M.C. Cheng, K3 Surfaces, N = 4 dyons and the Mathieu group M 24, Commun. Num. Theor. Phys. 4 (2010) 623 [arXiv:1005.5415] [INSPIRE].CrossRefzbMATHGoogle Scholar
  6. [6]
    M.R. Gaberdiel, S. Hohenegger and R. Volpato, Mathieu moonshine in the elliptic genus of K3, JHEP 10 (2010) 062 [arXiv:1008.3778] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    M.R. Gaberdiel, S. Hohenegger and R. Volpato, Mathieu twining characters for K3, JHEP 09 (2010) 058 [arXiv:1006.0221] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    S. Govindarajan, Brewing moonshine for Mathieu, arXiv:1012.5732 [INSPIRE].
  9. [9]
    S. Mukai, Finite groups of automorphisms of K3 surfaces and the Mathieur group, Invent. Math. 94 (1988) 183.MathSciNetADSCrossRefzbMATHGoogle Scholar
  10. [10]
    S. Kondo, Niemeier lattices, Mathieu groups and finite groups of symplectic automorphisms of K3 surfaces, appendix by S. Mukai, Duke Math. J. 92 (1998) 593.Google Scholar
  11. [11]
    V.V. Nikulin, Finite automorphism groups of Kaehler K3 surfaces, Trans. Mosc. Math. Soc. 38 (1980) 71.Google Scholar
  12. [12]
    V.V. Nikulin, Integral symmetric bilinear forms and some of their applications, Math. USSR Isv. 14 (1980) 103.CrossRefzbMATHGoogle Scholar
  13. [13]
    E. Witt, Eine Identität zwischen Modulformen zweiten Grades, Abh. Math. Sem. Hamburg 14 (1941) 323.CrossRefGoogle Scholar
  14. [14]
    M. Kneser, Klassenzahlen definiter quadratischer Formen, Arch. Math. 8 (1957) 241.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    M.R. Gaberdiel, S. Hohenegger and R. Volpato, Symmetries of K3 σ-models, Commun. Num. Theor. Phys. 6 (2012) 1 [arXiv:1106.4315] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    D.R. Morrison, On K3 surfaces with large Picard number, Invent. Math. 75 (1984) 105.MathSciNetADSCrossRefzbMATHGoogle Scholar
  17. [17]
    J. Milnor, On simply connected 4-manifolds, in Symposium Internacional de Topologia Algebraica, La Universidad Nacional Autónoma de México y la UNESCO, Mexico (1958), pg. 122-128.Google Scholar
  18. [18]
    J.-P. Serre, Cours darithmétique. Collection SUP:Le Mathématicien. Vol. 2, Presses Universitaires de France, Paris (1970).Google Scholar
  19. [19]
    J. Milnor and D. Husemoller, Symmetric bilinear forms, Springer-Verlag, (1973).Google Scholar
  20. [20]
    H.V. Niemeier, Definite quadratische Formen der Dimension 24 und Diskriminante 1, J. Number Theory 5 (1973) 142.MathSciNetADSCrossRefzbMATHGoogle Scholar
  21. [21]
    I.I. Pjateckiĭ-Šapiro and I.R. Šafarevič, Torellis theorem for algebraic surfaces of type K3, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971) 530.MathSciNetGoogle Scholar
  22. [22]
    V.V. Nikulin, On Kummer surfaces, Math. USSR Isv. 9 (1975) 261.CrossRefGoogle Scholar
  23. [23]
    K. Kodaira, On the structure of compact complex analytic surfaces, Am. J. Math. 86 (1964) 751.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    I.R. Šafarevič, Algebraic surfaces, in Proceedings of the Steklov Institute of Mathematics, No. 75, K. Kodaira and D.C. Spencer eds., American Mathematical Society, Providence, R.I., (1965), pp. ix+281, Translated from Russian by Susan Walker.Google Scholar
  25. [25]
    J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, New York Berlin Heidelberg London Paris Tokyo, (1988).CrossRefzbMATHGoogle Scholar
  26. [26]
    V.V. Nikulin, Kählerian K3 surfaces and Niemeier lattices, arXiv:1109.2879.
  27. [27]
    J.A. Todd, On representations of the Mathieu groups as collineation groups, J. London Math. Soc. 34 (1959) 406.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    J.A. Todd, A representation of the Mathieu group M 24 as a collineation group, Ann. Mat. Pura Appl. 71 (1966) 199.MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    J.H. Conway, Three lectures on exceptional groups, in Finite Simple Groups, Proceedings of an instructional conference organized by the London Mathematical Society (London and New York), M.B. Powell and G. Higman eds., Academic Press (1971).Google Scholar
  30. [30]
    C. Jordan, Traité des substitutions et des équations algébriques, Gauthier-Villars, Paris France (1870).Google Scholar
  31. [31]
    R.T. Curtis, Further elementary techniques using the miracle octad generator, Proc. Edinburgh Math. Soc. 32 (1989) 345.MathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    V.S. Kulikov, Surjectivity of the period mapping for K3 surfaces, Uspehi Mat. Nauk 32 (1977) 257.MathSciNetzbMATHGoogle Scholar
  33. [33]
    E. Looijenga, A Torelli theorem for Kähler-Einstein K3 surfaces, Lect. Notes Math. 894 (1981) 107.MathSciNetCrossRefGoogle Scholar
  34. [34]
    Y. Namikawa, Surjectivity of period map for K3 surfaces, in Classification of algebraic and analytic manifolds (Katata, 1982), Vol. 39 of Progr. Math., Birkhäuser Boston, Boston, MA, U.S.A (1983), pg. 379-397.Google Scholar
  35. [35]
    Y.T. Siu, A simple proof of the surjectivity of the period map of K3 surfaces, Manuscripta Math. 35 (1981) 311.MathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    A.N. Todorov, Applications of the Kähler-Einstein-Calabi-Yau metric to moduli of K3 surfaces, Invent. Math. 61 (1980) 251.MathSciNetADSCrossRefzbMATHGoogle Scholar
  37. [37]
    M.F. Atiyah, On analytic surfaces with double points, Proc. R. Soc. Lond. A247 (1958) 237.MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    T. Shioda and H. Inose, On singular K3 surfaces, in Complex Analysis and Algebraic Geometry, W.L. Bailey and T. Shioda eds., Cambridge University Press, (1977), pg. 119-136.Google Scholar
  39. [39]
    T. Shioda, On elliptic modular surfaces, J. Math. Soc. Japan 24 (1972) 20.MathSciNetADSCrossRefzbMATHGoogle Scholar
  40. [40]
    I.T. Todorov, How many Kähler metrics has a K3 surface?, in Arithmetic and Geometry: Papers dedicated to I.R. Shafarevich on the occasion of his sixtieth birthday. Vol. 2, Birkhäuser, (1983), pg. 451-463.Google Scholar
  41. [41]
    P. Griffiths and J. Harris, Principles of algebraic geometry, John Wiley & Sons, New York U.S.A. (1978).zbMATHGoogle Scholar
  42. [42]
    P.S. Aspinwall and D.R. Morrison, String theory on K3 surfaces, hep-th/9404151 [INSPIRE].
  43. [43]
    W. Nahm and K. Wendland, A Hikers guide to K3: Aspects of N = (4,4) superconformal field theory with central charge c = 6, Commun. Math. Phys. 216 (2001) 85 [hep-th/9912067] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  44. [44]
    W. Barth, C. Peters and A. Van de Ven, Compact Complex Surfaces, Springer-Verlag, (1984).Google Scholar
  45. [45]
    D. Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Inst. Hautes Études Sci. Publ. Math. No. 9 (1962) 5.CrossRefGoogle Scholar
  46. [46]
    G. Xiao, Galois covers between K3 surfaces, Ann. Inst. Fourier (Grenoble) 46 (1996) 73.MathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    G. Mason, Symplectic automorphisms of K3-Surfaces (after S. Mukai and V.V. Nikulin), CWI Newslett. 13 (1986) 3.zbMATHGoogle Scholar
  48. [48]
    A. Fujiki, Finite automorphism groups of complex tori of dimension two, Publ. Res. Inst. Math. Sci. 24 (1988) 1.MathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    R.T. Curtis, Symmetric generation of groups. Encyclopedia of Mathematics, Cambridge University Press, (2007).Google Scholar
  50. [50]
    K. Wendland, Moduli spaces of unitary conformal field theories, Ph.D. Thesis, University of Bonn, Bonn Germany (2000).Google Scholar
  51. [51]
    A. Taormina and K. Wendland, Symmetry-surfing the moduli space of Kummer K3s, arXiv:1303.2931 [INSPIRE].
  52. [52]
    R.T. Curtis, A new combinatorial approach to M 24, Math. Proc. Cambridge 79 (1976) 25.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Centre for Particle Theory & Department of Mathematical Sciences, Durham University, Science LaboratoriesDurhamU.K.
  2. 2.Mathematics InstituteAlbert-Ludwigs-Universität FreiburgFreiburg im BreisgauGermany

Personalised recommendations