Dynamic Mott gap from holographic fermions in geometries with hyperscaling violation

  • ZhongYing Fan


We investigate a dynamically generated Mott gap from holographic fermions in asymptotical geometries with hyperscaling violation by employing a bulk dipole coupling for fermions. We find that when the coupling strength increases, the spectral function first appears at the negative frequency region but is soon transferred to the positive region. A stable gap and two bands emerge for all momentums when the coupling strength exceeds a critical value. Generally, the upper band on the positive frequency axis is much sharper than the lower band on the negative side. When the diploe coupling increases further, the gap becomes larger. The upper band keeps sharp while the lower band disperses and widens, concentrating on the small momentum space. We also find that the bands will be smoothed out gradually with the increasing of hyperscaling violation.


Gauge-gravity correspondence AdS-CFT Correspondence Holography and condensed matter physics (AdS/CMT) 


  1. [1]
    T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, Phys. Rev. D 83 (2011) 125002 [arXiv:0907.2694] [INSPIRE].ADSGoogle Scholar
  2. [2]
    N. Iqbal, H. Liu and M. Mezei, Lectures on holographic non-Fermi liquids and quantum phase transitions, arXiv:1110.3814 [INSPIRE].
  3. [3]
    H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, Phys. Rev. D 83 (2011) 065029 [arXiv:0903.2477] [INSPIRE].ADSGoogle Scholar
  4. [4]
    N. Iizuka, N. Kundu, P. Narayan and S.P. Trivedi, Holographic Fermi and non-Fermi liquids with transitions in dilaton gravity, JHEP 01 (2012) 094 [arXiv:1105.1162] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    H. Lü and Z.-L. Wang, Exact Greens function and Fermi surfaces from conformal gravity, Phys. Lett. B 718 (2013) 1536 [arXiv:1210.4560] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J. Li, H.-S. Liu, H. Lü and Z.-L. Wang, Fermi surfaces and analytic Greens functions from conformal gravity, JHEP 02 (2013) 109 [arXiv:1210.5000] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    S.A. Hartnoll, D.M. Hofman and D. Vegh, Stellar spectroscopy: fermions and holographic Lifshitz criticality, JHEP 08 (2011) 096 [arXiv:1105.3197] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S.A. Hartnoll and A. Tavanfar, Electron stars for holographic metallic criticality, Phys. Rev. D 83 (2011) 046003 [arXiv:1008.2828] [INSPIRE].ADSGoogle Scholar
  9. [9]
    S.S. Gubser and J. Ren, Analytic fermionic Greens functions from holography, Phys. Rev. D 86 (2012) 046004 [arXiv:1204.6315] [INSPIRE].ADSGoogle Scholar
  10. [10]
    S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [INSPIRE].MathSciNetADSGoogle Scholar
  11. [11]
    M.H. Dehghani, R.B. Mann and R. Pourhasan, Charged Lifshitz black holes, Phys. Rev. D 84 (2011) 046002 [arXiv:1102.0578] [INSPIRE].ADSGoogle Scholar
  12. [12]
    J. Tarrío and S. Vandoren, Black holes and black branes in Lifshitz spacetimes, JHEP 09 (2011) 017 [arXiv:1105.6335] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE].
  14. [14]
    C. Charmousis, B. Gouteraux, B.S. Kim, E. Kiritsis and R. Meyer, Effective holographic theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    B. Goutéraux and E. Kiritsis, Generalized holographic quantum criticality at finite density, JHEP 12 (2011) 036 [arXiv:1107.2116] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    X. Dong, S. Harrison, S. Kachru, G. Torroba and H. Wang, Aspects of holography for theories with hyperscaling violation, JHEP 06 (2012) 041 [arXiv:1201.1905] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Edalati, J.F. Pedraza and W. Tangarife Garcia, Quantum fluctuations in holographic theories with hyperscaling violation, Phys. Rev. D 87 (2013) 046001 [arXiv:1210.6993] [INSPIRE].ADSGoogle Scholar
  18. [18]
    S.A. Hartnoll and E. Shaghoulian, Spectral weight in holographic scaling geometries, JHEP 07 (2012) 078 [arXiv:1203.4236] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    M. Edalati, R.G. Leigh and P.W. Phillips, Dynamically generated Mott gap from holography, Phys. Rev. Lett. 106 (2011) 091602 [arXiv:1010.3238] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M. Edalati, R.G. Leigh, K.W. Lo and P.W. Phillips, Dynamical gap and cuprate-like physics from holography, Phys. Rev. D 83 (2011) 046012 [arXiv:1012.3751] [INSPIRE].ADSGoogle Scholar
  21. [21]
    J.-P. Wu and H.-B. Zeng, Dynamic gap from holographic fermions in charged dilaton black branes, JHEP 04 (2012) 068 [arXiv:1201.2485] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    X.-M. Kuang, B. Wang and J.-P. Wu, Dynamical gap from holography in the charged dilaton black hole, Class. Quant. Grav. 30 (2013) 145011 [arXiv:1210.5735] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    W.-J. Li and H.-b. Zhang, Holographic non-relativistic fermionic fixed point and bulk dipole coupling, JHEP 11 (2011) 018 [arXiv:1110.4559] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    W.-Y. Wen and S.-Y. Wu, Dipole coupling effect of holographic fermion in charged dilatonic gravity, Phys. Lett. B 712 (2012) 266 [arXiv:1202.6539] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M. Henneaux, Boundary terms in the AdS/CFT correspondence for spinor fields, hep-th/9902137 [INSPIRE].
  26. [26]
    Z. Fan, Holographic fermions in asymptotically scaling geometries with hyperscaling violation, Phys. Rev. D 88 (2013) 026018 [arXiv:1303.6053] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Department of PhysicsBeijing Normal UniversityBeijingChina

Personalised recommendations