Controlling inclusive cross sections in parton shower + matrix element merging

Open Access
Article

Abstract

We propose an extension of matrix element plus parton shower merging at tree level to preserve inclusive cross sections obtained from the merged and showered sample. Implementing this constraint generates approximate next-to-leading order (NLO) contributions similar to the LoopSim approach. We then show how full NLO, or in principle even higher order, corrections can be added consistently, including constraints on inclusive cross sections to account for yet missing parton shower accuracy at higher logarithmic order. We also show how NLO accuracy below the merging scale can be obtained.

Keywords

Monte Carlo Simulations NLO Computations 

References

  1. [1]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  2. [2]
    M. Bähr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    T. Gleisberg et al., SHERPA 1.alpha: a proof of concept version, JHEP 02 (2004) 056 [hep-ph/0311263] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M.H. Seymour, Matrix element corrections to parton shower algorithms, Comput. Phys. Commun. 90 (1995) 95 [hep-ph/9410414] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    E. Norrbin and T. Sjöstrand, QCD radiation off heavy particles, Nucl. Phys. B 603 (2001) 297 [hep-ph/0010012] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S. Catani, F. Krauss, R. Kuhn and B. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    L. Lönnblad, Correcting the color dipole cascade model with fixed order matrix elements, JHEP 05 (2002) 046 [hep-ph/0112284] [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    F. Krauss, Matrix elements and parton showers in hadronic interactions, JHEP 08 (2002) 015 [hep-ph/0205283] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    S. Hoeche et al., Matching parton showers and matrix elements, hep-ph/0602031 [INSPIRE].
  10. [10]
    N. Lavesson and L. Lönnblad, Merging parton showers and matrix elements: Back to basics, JHEP 04 (2008) 085 [arXiv:0712.2966] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S. Hoeche, F. Krauss, S. Schumann and F. Siegert, QCD matrix elements and truncated showers, JHEP 05 (2009) 053 [arXiv:0903.1219] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    K. Hamilton, P. Richardson and J. Tully, A modified CKKW matrix element merging approach to angular-ordered parton showers, JHEP 11 (2009) 038 [arXiv:0905.3072] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    L. Lönnblad and S. Prestel, Matching tree-level matrix elements with interleaved showers, JHEP 03 (2012) 019 [arXiv:1109.4829] [INSPIRE].CrossRefGoogle Scholar
  14. [14]
    M. Dobbs, Phase space veto method for next-to-leading order event generators in hadronic collisions, Phys. Rev. D 65 (2002) 094011 [hep-ph/0111234] [INSPIRE].ADSGoogle Scholar
  15. [15]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    P. Nason, A New method for combining NLO QCD with shower Monte Ccbnarlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    Z. Nagy and D.E. Soper, Matching parton showers to NLO computations, JHEP 10 (2005) 024 [hep-ph/0503053] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S. Frixione, F. Stoeckli, P. Torrielli and B.R. Webber, NLO QCD corrections in HERWIG++ with MC@NLO, JHEP 01 (2011) 053 [arXiv:1010.0568] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S. Platzer and S. Gieseke, Dipole showers and automated NLO matching in HERWIG++, Eur. Phys. J. C 72 (2012) 2187 [arXiv:1109.6256] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    Z. Nagy and D.E. Soper, A new parton shower algorithm: shower evolution, matching at leading and next-to-leading order level, hep-ph/0601021 [INSPIRE].
  21. [21]
    J.-C. Winter and F. Krauss, Initial-state showering based on colour dipoles connected to incoming parton lines, JHEP 07 (2008) 040 [arXiv:0712.3913] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M. Dinsdale, M. Ternick and S. Weinzierl, Parton showers from the dipole formalism, Phys. Rev. D 76 (2007) 094003 [arXiv:0709.1026] [INSPIRE].ADSGoogle Scholar
  23. [23]
    S. Schumann and F. Krauss, A parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP 03 (2008) 038 [arXiv:0709.1027] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    W.T. Giele, D.A. Kosower and P.Z. Skands, A simple shower and matching algorithm, Phys. Rev. D 78 (2008) 014026 [arXiv:0707.3652] [INSPIRE].ADSGoogle Scholar
  25. [25]
    S. Platzer and S. Gieseke, Coherent parton showers with local recoils, JHEP 01 (2011) 024 [arXiv:0909.5593] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    W. Kilian, J. Reuter, S. Schmidt and D. Wiesler, An analytic initial-state parton shower, JHEP 04 (2012) 013 [arXiv:1112.1039] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    C.W. Bauer, F.J. Tackmann and J. Thaler, GenEvA. I. A new framework for event generation, JHEP 12 (2008) 010 [arXiv:0801.4026] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    C.W. Bauer, F.J. Tackmann and J. Thaler, GenEvA. II. A phase space generator from a reweighted parton shower, JHEP 12 (2008) 011 [arXiv:0801.4028] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    K. Hamilton and P. Nason, Improving NLO-parton shower matched simulations with higher order matrix elements, JHEP 06 (2010) 039 [arXiv:1004.1764] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S. Hoche, F. Krauss, M. Schonherr and F. Siegert, NLO matrix elements and truncated showers, JHEP 08 (2011) 123 [arXiv:1009.1127] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    N. Lavesson and L. Lönnblad, Extending CKKW-merging to one-loop matrix elements, JHEP 12 (2008) 070 [arXiv:0811.2912] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, QCD matrix elements + parton showers: the NLO case, JHEP 04 (2013) 027 [arXiv:1207.5030] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    T. Gehrmann, S. Hoche, F. Krauss, M. Schonherr and F. Siegert, NLO QCD matrix elements + parton showers in e + e hadrons, JHEP 01 (2013) 144 [arXiv:1207.5031] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    R. Frederix and S. Frixione, Merging meets matching in MC@NLO, JHEP 12 (2012) 061 [arXiv:1209.6215] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    F. Tackmann, private communication.Google Scholar
  36. [36]
    S. Plätzer, Parton showers and radiative corrections in QCD, Ph.D. Thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany (2010).Google Scholar
  37. [37]
    M. Rubin, G.P. Salam and S. Sapeta, Giant QCD K-factors beyond NLO, JHEP 09 (2010) 084 [arXiv:1006.2144] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    L. Lönnblad and S. Prestel, Unitarising matrix element + parton shower merging, JHEP 02 (2013) 094 [arXiv:1211.4827] [INSPIRE].CrossRefGoogle Scholar
  39. [39]
    L. Lönnblad and S. Prestel, Merging multi-leg NLO matrix elements with parton showers, JHEP 03 (2013) 166 [arXiv:1211.7278] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  1. 1.DESYHamburgGermany

Personalised recommendations