Advertisement

Five models for lepton mixing

  • P. M. Ferreira
  • L. Lavoura
  • P. O. LudlEmail author
Article

Abstract

We produce five flavour models for the lepton sector. All five models fit perfectly well — at the 1σ level — the existing data on the neutrino mass-squared differences and on the lepton mixing angles. The models are based on the type I seesaw mechanism, on a \( {{\mathbb{Z}}_2} \) symmetry for each lepton flavour, and either on a (spontaneously broken) symmetry under the interchange of two lepton flavours or on a (spontaneously broken) CP symmetry incorporating that interchange — or on both symmetries simultaneously. Each model makes definite predictions both for the scale of the neutrino masses and for the phase δ in lepton mixing; the fifth model also predicts a correlation between the lepton mixing angles θ 12 and θ 23.

Keywords

Neutrino Physics Discrete and Finite Symmetries 

References

  1. [1]
    DOUBLE-CHOOZ collaboration, Y. Abe et al., Indication for the disappearance of reactor electron antineutrinos in the Double CHOOZ experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    DAYA-BAY collaboration, F. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    RENO collaboration, J. Ahn et al., Observation of reactor electron antineutrino disappearance in the RENO experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    W. Grimus and L. Lavoura, Softly broken lepton numbers and maximal neutrino mixing, JHEP 07 (2001) 045 [hep-ph/0105212] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    G. Fogli et al., Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP-violation searches, Phys. Rev. D 86 (2012) 013012 [arXiv:1205.5254] [INSPIRE].ADSGoogle Scholar
  6. [6]
    D. Forero, M. Tortola and J. Valle, Global status of neutrino oscillation parameters after Neutrino-2012, Phys. Rev. D 86 (2012) 073012 [arXiv:1205.4018] [INSPIRE].ADSGoogle Scholar
  7. [7]
    M. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, Global fit to three neutrino mixing: critical look at present precision, JHEP 12 (2012) 123 [arXiv:1209.3023] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    W. Grimus and L. Lavoura, A nonstandard CP transformation leading to maximal atmospheric neutrino mixing, Phys. Lett. B 579 (2004) 113 [hep-ph/0305309] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    W. Grimus and L. Lavoura, A discrete symmetry group for maximal atmospheric neutrino mixing, Phys. Lett. B 572 (2003) 189 [hep-ph/0305046] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    P.H. Frampton, S.L. Glashow and D. Marfatia, Zeroes of the neutrino mass matrix, Phys. Lett. B 536 (2002) 79 [hep-ph/0201008] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    L. Lavoura, Zeros of the inverted neutrino mass matrix, Phys. Lett. B 609 (2005) 317 [hep-ph/0411232] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    W. Grimus and L. Lavoura, μ-τ interchange symmetry and lepton mixing, Fortsch. Phys. 61 (2013) 535 [arXiv:1207.1678] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    W. Rodejohann, M. Tanimoto and A. Watanabe, Relating large U e3 to the ratio of neutrino mass-squared differences, Phys. Lett. B 710 (2012) 636 [arXiv:1201.4936] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    P. Ludl, S. Morisi and E. Peinado, The reactor mixing angle and CP-violation with two texture zeros in the light of T2K, Nucl. Phys. B 857 (2012) 411 [arXiv:1109.3393] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    G. Altarelli, F. Feruglio and L. Merlo, Tri-bimaximal neutrino mixing and discrete flavour symmetries, Fortsch. Phys. 61 (2013) 507 [arXiv:1205.5133] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    H. Ishimori and E. Ma, New Simple A 4 neutrino model for nonzero θ13 and large δCP, Phys. Rev. D 86 (2012) 045030 [arXiv:1205.0075] [INSPIRE].ADSGoogle Scholar
  17. [17]
    E. Ma, Self-organizing neutrino mixing matrix, Phys. Rev. D 86 (2012) 117301 [arXiv:1209.3374] [INSPIRE].ADSGoogle Scholar
  18. [18]
    C. Lam, Finite symmetry of leptonic mass matrices, Phys. Rev. D 87 (2013) 013001 [arXiv:1208.5527] [INSPIRE].ADSGoogle Scholar
  19. [19]
    M. Holthausen, K.S. Lim and M. Lindner, Lepton mixing patterns from a scan of finite discrete groups, Phys. Lett. B 721 (2013) 61 [arXiv:1212.2411] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S.F. King, T. Neder and A.J. Stuart, Lepton mixing predictions from Δ(6n 2) family symmetry, arXiv:1305.3200 [INSPIRE].
  21. [21]
    C. Lam, Determining horizontal symmetry from neutrino mixing, Phys. Rev. Lett. 101 (2008) 121602 [arXiv:0804.2622] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    R. de Adelhart Toorop, F. Feruglio and C. Hagedorn, Finite modular groups and lepton mixing, Nucl. Phys. B 858 (2012) 437 [arXiv:1112.1340] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    D. Hernandez and A.Y. Smirnov, Lepton mixing and discrete symmetries, Phys. Rev. D 86 (2012) 053014 [arXiv:1204.0445] [INSPIRE].ADSGoogle Scholar
  24. [24]
    L. Lavoura, On a possible relationship between lepton mixing and the stability of dark matter, J. Phys. G 39 (2012) 025202 [arXiv:1109.6854] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Blum, C. Hagedorn and M. Lindner, Fermion masses and mixings from dihedral flavor symmetries with preserved subgroups, Phys. Rev. D 77 (2008) 076004 [arXiv:0709.3450] [INSPIRE].ADSGoogle Scholar
  26. [26]
    P. Ko, T. Kobayashi, J.-h. Park and S. Raby, String-derived D 4 flavor symmetry and phenomenological implications, Phys. Rev. D 76 (2007) 035005 [Erratum ibid. D 76 (2007) 059901] [arXiv:0704.2807] [INSPIRE].ADSGoogle Scholar
  27. [27]
    H. Ishimori et al., Soft supersymmetry breaking terms from D 4 × Z 2 lepton flavor symmetry, Phys. Rev. D 77 (2008) 115005 [arXiv:0803.0796] [INSPIRE].ADSGoogle Scholar
  28. [28]
    C. Hagedorn and R. Ziegler, μ-τ symmetry and charged lepton mass hierarchy in a supersymmetric D 4 model, Phys. Rev. D 82 (2010) 053011 [arXiv:1007.1888] [INSPIRE].ADSGoogle Scholar
  29. [29]
    D. Meloni, S. Morisi and E. Peinado, Stability of dark matter from the D 4 × Z 2 flavor group, Phys. Lett. B 703 (2011) 281 [arXiv:1104.0178] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    W. Grimus, L. Lavoura and B. Radovcic, Type II seesaw mechanism for Higgs doublets and the scale of new physics, Phys. Lett. B 674 (2009) 117 [arXiv:0902.2325] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    G. Branco et al., Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    P.M. Ferreira, R. Santos, M. Sher and J.P. Silva, Implications of the LHC two-photon signal for two-Higgs-doublet models, Phys. Rev. D 85 (2012) 077703 [arXiv:1112.3277] [INSPIRE].ADSGoogle Scholar
  33. [33]
    S. Chang et al., Comprehensive study of two Higgs doublet model in light of the new boson with mass around 125 GeV, JHEP 05 (2013) 075 [arXiv:1210.3439] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    G. Bélanger, B. Dumont, U. Ellwanger, J. Gunion and S. Kraml, Higgs couplings at the end of 2012, JHEP 02 (2013) 053 [arXiv:1212.5244] [INSPIRE].CrossRefGoogle Scholar
  35. [35]
    C.-Y. Chen and S. Dawson, Exploring two Higgs doublet models through Higgs production, Phys. Rev. D 87 (2013) 055016 [arXiv:1301.0309] [INSPIRE].ADSGoogle Scholar
  36. [36]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  37. [37]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  38. [38]
    W. Grimus and L. Lavoura, The Seesaw mechanism at arbitrary order: disentangling the small scale from the large scale, JHEP 11 (2000) 042 [hep-ph/0008179] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Holthausen, M. Lindner and M.A. Schmidt, CP and discrete flavour symmetries, JHEP 04 (2013) 122 [arXiv:1211.6953] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    F. Feruglio, C. Hagedorn and R. Ziegler, Lepton mixing parameters from discrete and CP symmetries, JHEP 07 (2013) 027 [arXiv:1211.5560] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    G. Ecker, W. Grimus and W. Konetschny, Quark mass matrices in left-right symmetric gauge theories, Nucl. Phys. B 191 (1981) 465 [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    G. Ecker, W. Grimus and H. Neufeld, Spontaneous CP-violation in left-right symmetric gauge theories, Nucl. Phys. B 247 (1984) 70 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    P. Ferreira, W. Grimus, L. Lavoura and P. Ludl, Maximal CP-violation in lepton mixing from a Model with Δ(27) flavour symmetry, JHEP 09 (2012) 128 [arXiv:1206.7072] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    R. Mohapatra and C. Nishi, S 4 flavored CP symmetry for neutrinos, Phys. Rev. D 86 (2012) 073007 [arXiv:1208.2875] [INSPIRE].ADSGoogle Scholar
  45. [45]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  46. [46]
    R. de Putter et al., New neutrino mass bounds from Sloan Digital Sky Survey III data release 8 photometric luminous galaxies, Astrophys. J. 761 (2012) 12 [arXiv:1201.1909] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    Z. Hou et al., Constraints on cosmology from the cosmic microwave background power spectrum of the 2500-square degree SPT-SZ Survey, arXiv:1212.6267 [INSPIRE].
  48. [48]
    Planck collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [INSPIRE].
  49. [49]
    W. Grimus and L. Lavoura, Soft lepton flavor violation in a multi Higgs doublet seesaw model, Phys. Rev. D 66 (2002) 014016 [hep-ph/0204070] [INSPIRE].ADSGoogle Scholar
  50. [50]
    R. Alonso, M. Dhen, M. Gavela and T. Hambye, Muon conversion to electron in nuclei in type-I seesaw models, JHEP 01 (2013) 118 [arXiv:1209.2679] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Instituto Superior de Engenharia de LisboaLisbonPortugal
  2. 2.Centre for Theoretical and Computational PhysicsUniversity of LisbonLisbonPortugal
  3. 3.Technical University of Lisbon, Instituto Superior Técnico, CFTPLisbonPortugal
  4. 4.University of Vienna, Faculty of PhysicsViennaAustria

Personalised recommendations