Advertisement

Holographic d-wave superconductors

  • Keun-Young Kim
  • Marika Taylor
Article

Abstract

We construct top down models for holographic d-wave superfluids in which the order parameter is a charged spin two field in the bulk. Close to the transition temperature the condensed phase can be captured by a charged spin two field in an R-charged black hole background (downstairs picture) or equivalently by specific graviton perturbations of a spinning black brane (upstairs picture). We analyse the necessary conditions on the mass and the charge of the spin two field for a condensed phase to exist and we discuss the competition of the d-wave phase with other phases such as s-wave superfluids.

Keywords

Holography and condensed matter physics (AdS/CMT) AdS-CFT Correspondence 

References

  1. [1]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    C.P. Herzog, Lectures on Holographic Superfluidity and Superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [INSPIRE].Google Scholar
  3. [3]
    J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [INSPIRE].Google Scholar
  4. [4]
    G.T. Horowitz, Introduction to Holographic Superconductors, Lect. Notes Phys. 828 (2011) 313 [arXiv:1002.1722] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].ADSGoogle Scholar
  6. [6]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    G.T. Horowitz, J.E. Santos and D. Tong, Optical conductivity with holographic lattices, JHEP 07 (2012) 168 [arXiv:1204.0519] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    G.T. Horowitz, J.E. Santos and D. Tong, Further evidence for lattice-induced scaling, JHEP 11 (2012) 102 [arXiv:1209.1098] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    S. Nakamura, H. Ooguri and C.-S. Park, Gravity Dual of Spatially Modulated Phase, Phys. Rev. D 81 (2010) 044018 [arXiv:0911.0679] [INSPIRE].ADSGoogle Scholar
  10. [10]
    H. Ooguri and C.-S. Park, Holographic End-Point of Spatially Modulated Phase Transition, Phys. Rev. D 82 (2010) 126001 [arXiv:1007.3737] [INSPIRE].ADSGoogle Scholar
  11. [11]
    H. Ooguri and C.-S. Park, Spatially Modulated Phase in Holographic quark-gluon Plasma, Phys. Rev. Lett. 106 (2011) 061601 [arXiv:1011.4144] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    O. Bergman, N. Jokela, G. Lifschytz and M. Lippert, Striped instability of a holographic Fermi-like liquid, JHEP 10 (2011) 034 [arXiv:1106.3883] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Donos, J.P. Gauntlett and C. Pantelidou, Spatially modulated instabilities of magnetic black branes, JHEP 01 (2012) 061 [arXiv:1109.0471] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Donos and J.P. Gauntlett, Holographic striped phases, JHEP 08 (2011) 140 [arXiv:1106.2004] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A. Donos and J.P. Gauntlett, Helical superconducting black holes, Phys. Rev. Lett. 108 (2012) 211601 [arXiv:1203.0533] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A. Donos, J.P. Gauntlett, J. Sonner and B. Withers, Competing orders in M-theory: superfluids, stripes and metamagnetism, JHEP 03 (2013) 108 [arXiv:1212.0871] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    J.-W. Chen, Y.-J. Kao, D. Maity, W.-Y. Wen and C.-P. Yeh, Towards A Holographic Model of D-Wave Superconductors, Phys. Rev. D 81 (2010) 106008 [arXiv:1003.2991] [INSPIRE].ADSGoogle Scholar
  18. [18]
    H.-B. Zeng, Z.-Y. Fan and H.-S. Zong, d-wave Holographic Superconductor Vortex Lattice and Non-Abelian Holographic Superconductor Droplet, Phys. Rev. D 82 (2010) 126008 [arXiv:1007.4151] [INSPIRE].ADSGoogle Scholar
  19. [19]
    J.-W. Chen, Y.-S. Liu and D. Maity, d + id holographic superconductors, JHEP 05 (2011) 032 [arXiv:1103.1714] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    D. Gao, Vortex and droplet in holographic D-wave superconductors, Phys. Lett. A 376 (2012) 1705 [arXiv:1112.2422] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    X.-H. Ge, S.F. Tu and B. Wang, d-Wave holographic superconductors with backreaction in external magnetic fields, JHEP 09 (2012) 088 [arXiv:1209.4272] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    F. Benini, C.P. Herzog and A. Yarom, Holographic Fermi arcs and a d-wave gap, Phys. Lett. B 701 (2011) 626 [arXiv:1006.0731] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    F. Benini, C.P. Herzog, R. Rahman and A. Yarom, Gauge gravity duality for d-wave superconductors: prospects and challenges, JHEP 11 (2010) 137 [arXiv:1007.1981] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    G.S. Hartnett and G.T. Horowitz, Geons and spin-2 condensates in the AdS soliton, JHEP 01 (2013) 010 [arXiv:1210.1606] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    K. Maeda and T. Okamura, Characteristic length of an AdS/CFT superconductor, Phys. Rev. D 78 (2008) 106006 [arXiv:0809.3079] [INSPIRE].MathSciNetADSGoogle Scholar
  26. [26]
    C.P. Herzog, An analytic holographic superconductor, Phys. Rev. D 81 (2010) 126009 [arXiv:1003.3278] [INSPIRE].ADSGoogle Scholar
  27. [27]
    G. Siopsis and J. Therrien, Analytic calculation of properties of holographic superconductors, JHEP 05 (2010) 013 [arXiv:1003.4275] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    I. Buchbinder, V. Krykhtin and V. Pershin, On consistent equations for massive spin two field coupled to gravity in string theory, Phys. Lett. B 466 (1999) 216 [hep-th/9908028] [INSPIRE].MathSciNetADSGoogle Scholar
  29. [29]
    I. Buchbinder, D. Gitman, V. Krykhtin and V. Pershin, Equations of motion for massive spin-2 field coupled to gravity, Nucl. Phys. B 584 (2000) 615 [hep-th/9910188] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    I. Buchbinder, D. Gitman and V. Pershin, Causality of massive spin-2 field in external gravity, Phys. Lett. B 492 (2000) 161 [hep-th/0006144] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    I. Buchbinder, T. Snegirev and Y. Zinoviev, Cubic interaction vertex of higher-spin fields with external electromagnetic field, Nucl. Phys. B 864 (2012) 694 [arXiv:1204.2341] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    S. Deser and A. Waldron, Partial masslessness of higher spins in (A)dS, Nucl. Phys. B 607 (2001) 577 [hep-th/0103198] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    S. Deser and A. Waldron, Inconsistencies of massive charged gravitating higher spins, Nucl. Phys. B 631 (2002) 369 [hep-th/0112182] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    M. Porrati and R. Rahman, Notes on a cure for higher-spin acausality, Phys. Rev. D 84 (2011) 045013 [arXiv:1103.6027] [INSPIRE].ADSGoogle Scholar
  35. [35]
    M. Kulaxizi and R. Rahman, Holographic constraints on a vector boson, JHEP 04 (2013) 164 [arXiv:1212.6265] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    R. Gregory, S. Kanno and J. Soda, Holographic superconductors with higher curvature corrections, JHEP 10 (2009) 010 [arXiv:0907.3203] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    J. Maldacena, D. Martelli and Y. Tachikawa, Comments on string theory backgrounds with non-relativistic conformal symmetry, JHEP 10 (2008) 072 [arXiv:0807.1100] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    D. Cassani, G. Dall’Agata and A.F. Faedo, Type IIB supergravity on squashed Sasaki-Einstein manifolds, JHEP 05 (2010) 094 [arXiv:1003.4283] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    K. Skenderis, M. Taylor and D. Tsimpis, A consistent truncation of IIB supergravity on manifolds admitting a Sasaki-Einstein structure, JHEP 06 (2010) 025 [arXiv:1003.5657] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    J.P. Gauntlett and O. Varela, Universal Kaluza-Klein reductions of type IIB to N = 4 supergravity in five dimensions, JHEP 06 (2010) 081 [arXiv:1003.5642] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    J.T. Liu, P. Szepietowski and Z. Zhao, Consistent massive truncations of IIB supergravity on Sasaki-Einstein manifolds, Phys. Rev. D 81 (2010) 124028 [arXiv:1003.5374] [INSPIRE].ADSGoogle Scholar
  42. [42]
    M. Cvetič et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetADSzbMATHGoogle Scholar
  45. [45]
    K. Skenderis and M. Taylor, Kaluza-Klein holography, JHEP 05 (2006) 057 [hep-th/0603016] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    H. Kim, L. Romans and P. van Nieuwenhuizen, The Mass Spectrum of Chiral N = 2 D = 10 Supergravity on S 5, Phys. Rev. D 32 (1985) 389 [INSPIRE].ADSGoogle Scholar
  47. [47]
    G. Arutyunov and S. Frolov, Quadratic action for Type IIB supergravity on AdS 5 × S 5, JHEP 08 (1999) 024 [hep-th/9811106] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    S.S. Gubser, Einstein manifolds and conformal field theories, Phys. Rev. D 59 (1999) 025006 [hep-th/9807164] [INSPIRE].MathSciNetADSGoogle Scholar
  49. [49]
    A. Ceresole, G. Dall’Agata, R. D’Auria and S. Ferrara, Spectrum of type IIB supergravity on AdS 5 × T 11 : Predictions on N = 1 SCFTs, Phys. Rev. D 61 (2000) 066001 [hep-th/9905226] [INSPIRE].
  50. [50]
    A. Ceresole, G. Dall’Agata and R. D’Auria, K K spectroscopy of type IIB supergravity on AdS 5 × T 11, JHEP 11 (1999) 009 [hep-th/9907216] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    S. Lee, S. Minwalla, M. Rangamani and N. Seiberg, Three point functions of chiral operators in D = 4, N = 4 SYM at large-N , Adv. Theor. Math. Phys. 2 (1998) 697 [hep-th/9806074] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  52. [52]
    G. Arutyunov and S. Frolov, Some cubic couplings in type IIB supergravity on AdS 5 × S 5 and three point functions in SYM(4) at large-N , Phys. Rev. D 61 (2000) 064009 [hep-th/9907085] [INSPIRE].MathSciNetADSGoogle Scholar
  53. [53]
    K. Skenderis and M. Taylor, Holographic Coulomb branch vevs, JHEP 08 (2006) 001 [hep-th/0604169] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    K. Skenderis and M. Taylor, Anatomy of bubbling solutions, JHEP 09 (2007) 019 [arXiv:0706.0216] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    S. Ferrara, M. Porrati and V.L. Telegdi, G = 2 as the natural value of the tree level gyromagnetic ratio of elementary particles, Phys. Rev. D 46 (1992) 3529 [INSPIRE].ADSGoogle Scholar
  56. [56]
    K.-Y. Kim, K. Skenderis and M. Taylor, Fermions in top down d-wave models.Google Scholar
  57. [57]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Institute of Theoretical PhysicsAmsterdamThe Netherlands
  2. 2.Department of Physics and Photon ScienceGwangju Institute of Science and TechnologyGwangjuSouth Korea
  3. 3.School of Mathematical Sciences and STAG Research CentreUniversity of SouthamptonSouthamptonU.K

Personalised recommendations