Electroweak precision observables, new physics and the nature of a 126 GeV Higgs boson

  • Marco Ciuchini
  • Enrico Franco
  • Satoshi Mishima
  • Luca Silvestrini
Article

Abstract

We perform the fit of electroweak precision observables within the Standard Model with a 126 GeV Higgs boson, compare the results with the theoretical predictions and discuss the impact of recent experimental and theoretical improvements. We introduce New Physics contributions in a model-independent way and fit for the S, T and U parameters, for the ϵ1,2,3,b ones, for modified \( Zb\overline{b} \) couplings and for a modified Higgs coupling to vector bosons. We point out that composite Higgs models are very strongly constrained. Finally, we compute the bounds on dimension-six operators relevant for the electroweak fit.

Keywords

LEP HERA and SLC Physics Beyond Standard Model Quark Masses and SM Parameters Standard Model 

References

  1. [1]
    U. Amaldi et al., A comprehensive analysis of data pertaining to the weak neutral current and the intermediate vector boson masses, Phys. Rev. D 36 (1987) 1385 [INSPIRE].ADSGoogle Scholar
  2. [2]
    G. Costa, J.R. Ellis, G.L. Fogli, D.V. Nanopoulos and F. Zwirner, Neutral currents within and beyond the standard model, Nucl. Phys. B 297 (1988) 244 [INSPIRE].ADSGoogle Scholar
  3. [3]
    P. Langacker and M.-x. Luo, Implications of precision electroweak experiments for M t , ρ 0 , sin2 θ W and grand unification, Phys. Rev. D 44 (1991) 817 [INSPIRE].ADSGoogle Scholar
  4. [4]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].ADSGoogle Scholar
  5. [5]
    J. Erler and P. Langacker, Implications of high precision experiments and the CDF top quark candidates, Phys. Rev. D 52 (1995) 441 [hep-ph/9411203] [INSPIRE].ADSGoogle Scholar
  6. [6]
    G. Altarelli and R. Barbieri, Vacuum polarization effects of new physics on electroweak processes, Phys. Lett. B 253 (1991) 161 [INSPIRE].ADSGoogle Scholar
  7. [7]
    G. Altarelli, R. Barbieri and S. Jadach, Toward a model independent analysis of electroweak data, Nucl. Phys. B 369 (1992) 3 [Erratum ibid. B 376 (1992) 444] [INSPIRE].
  8. [8]
    G. Altarelli, R. Barbieri and F. Caravaglios, Nonstandard analysis of electroweak precision data, Nucl. Phys. B 405 (1993) 3 [INSPIRE].ADSGoogle Scholar
  9. [9]
    R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [INSPIRE].ADSGoogle Scholar
  10. [10]
    B. Grinstein and M.B. Wise, Operator analysis for precision electroweak physics, Phys. Lett. B 265 (1991) 326 [INSPIRE].ADSGoogle Scholar
  11. [11]
    R. Barbieri and A. Strumia, What is the limit on the Higgs mass?, Phys. Lett. B 462 (1999) 144 [hep-ph/9905281] [INSPIRE].ADSGoogle Scholar
  12. [12]
    ATLAS collaboration, Combined measurements of the mass and signal strength of the Higgs-like boson with the ATLAS detector using up to 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-014 (2013).
  13. [13]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  14. [14]
    CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-13-005 (2013).
  15. [15]
    CMS collaboration, Observation of a new boson with mass near 125 GeV in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, JHEP 06 (2013) 081 [arXiv:1303.4571] [INSPIRE].ADSGoogle Scholar
  16. [16]
    A. Freitas and Y.-C. Huang, Electroweak two-loop corrections to sin2 \( \theta_{\mathrm{eff}}^{{b\overline{b}}} \) and R b using numerical Mellin-Barnes integrals, JHEP 08 (2012) 050 [Erratum ibid. 1305 (2013) 074] [arXiv:1205.0299] [INSPIRE].
  17. [17]
    G. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].ADSGoogle Scholar
  18. [18]
    R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong double Higgs production at the LHC, JHEP 05 (2010) 089 [arXiv:1002.1011] [INSPIRE].ADSGoogle Scholar
  19. [19]
    A. Azatov, R. Contino and J. Galloway, Model-independent bounds on a light Higgs, JHEP 04 (2012) 127 [Erratum ibid. 1304 (2013) 140] [arXiv:1202.3415] [INSPIRE].
  20. [20]
    R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner and M. Spira, Effective lagrangian for a light Higgs-like scalar, JHEP 07 (2013) 035 [arXiv:1303.3876] [INSPIRE].MathSciNetADSGoogle Scholar
  21. [21]
    A. Caldwell, D. Kollar and K. Kroninger, BAT: the Bayesian Analysis Toolkit, Comput. Phys. Commun. 180 (2009) 2197 [arXiv:0808.2552] [INSPIRE].ADSMATHGoogle Scholar
  22. [22]
    D.Y. Bardin et al., ZFITTER v.6.21: a semianalytical program for fermion pair production in e + e annihilation, Comput. Phys. Commun. 133 (2001) 229 [hep-ph/9908433] [INSPIRE].ADSMATHGoogle Scholar
  23. [23]
    D.Y. Bardin et al., ZFITTER: an analytical program for fermion pair production in e + e annihilation, hep-ph/9412201 [INSPIRE].
  24. [24]
    A. Arbuzov et al., ZFITTER: a semi-analytical program for fermion pair production in e + e annihilation, from version 6.21 to version 6.42, Comput. Phys. Commun. 174 (2006) 728 [hep-ph/0507146] [INSPIRE].ADSGoogle Scholar
  25. [25]
    A. Akhundov, A. Arbuzov, S. Riemann and T. Riemann, ZFITTER 1985–2013, arXiv:1302.1395 [INSPIRE].
  26. [26]
    G.-C. Cho and K. Hagiwara, Supersymmetry versus precision experiments revisited, Nucl. Phys. B 574 (2000) 623 [hep-ph/9912260] [INSPIRE].ADSGoogle Scholar
  27. [27]
    G.-C. Cho, K. Hagiwara, Y. Matsumoto and D. Nomura, The MSSM confronts the precision electroweak data and the muon g − 2, JHEP 11 (2011) 068 [arXiv:1104.1769] [INSPIRE].ADSGoogle Scholar
  28. [28]
    M. Ciuchini et al., 2000 CKM triangle analysis: a critical review with updated experimental inputs and theoretical parameters, JHEP 07 (2001) 013 [hep-ph/0012308] [INSPIRE].ADSGoogle Scholar
  29. [29]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  30. [30]
    S. Bethke, World summary of α s (2012), Nucl. Phys. Proc. Suppl. 234 (2013) 229 [arXiv:1210.0325] [INSPIRE].ADSGoogle Scholar
  31. [31]
    H. Burkhardt and B. Pietrzyk, Recent BES measurements and the hadronic contribution to the QED vacuum polarization, Phys. Rev. D 84 (2011) 037502 [arXiv:1106.2991] [INSPIRE].ADSGoogle Scholar
  32. [32]
    M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic contributions to the muon g − 2 and to α(M Z), Eur. Phys. J. C 71 (2011) 1515 [Erratum ibid. C 72 (2012) 1874] [arXiv:1010.4180] [INSPIRE].
  33. [33]
    K. Hagiwara, R. Liao, A.D. Martin, D. Nomura and T. Teubner, (g − 2)μ and \( \alpha \left( {M_Z^2} \right) \) re-evaluated using new precise data, J. Phys. G 38 (2011) 085003 [arXiv:1105.3149] [INSPIRE].ADSGoogle Scholar
  34. [34]
    F. Jegerlehner, Electroweak effective couplings for future precision experiments, Nuovo Cim. C 034S1 (2011) 31 [arXiv:1107.4683] [INSPIRE].Google Scholar
  35. [35]
    CDF, D0 collaboration, T. Aaltonen et al., Combination of the top-quark mass measurements from the Tevatron collider, Phys. Rev. D 86 (2012) 092003 [arXiv:1207.1069] [INSPIRE].ADSGoogle Scholar
  36. [36]
    ATLAS collaboration, Combination of ATLAS and CMS results on the mass of the top quark using up to 4.9 fb −1 of data, ATLAS-CONF-2012-095 (2012).
  37. [37]
    S. Alekhin, A. Djouadi and S. Moch, The top quark and Higgs boson masses and the stability of the electroweak vacuum, Phys. Lett. B 716 (2012) 214 [arXiv:1207.0980] [INSPIRE].ADSGoogle Scholar
  38. [38]
    K. Chetyrkin, B.A. Kniehl and M. Steinhauser, Strong coupling constant with flavor thresholds at four loops in the MS scheme, Phys. Rev. Lett. 79 (1997) 2184 [hep-ph/9706430] [INSPIRE].ADSGoogle Scholar
  39. [39]
    K. Chetyrkin, Quark mass anomalous dimension to \( O\left( {\alpha_S^4} \right) \), Phys. Lett. B 404 (1997) 161 [hep-ph/9703278] [INSPIRE].ADSGoogle Scholar
  40. [40]
    K. Chetyrkin, J.H. Kuhn and M. Steinhauser, RunDec: a Mathematica package for running and decoupling of the strong coupling and quark masses, Comput. Phys. Commun. 133 (2000) 43 [hep-ph/0004189] [INSPIRE].ADSMATHGoogle Scholar
  41. [41]
    The LEP Electroweak Working Group, http://lepewwg.web.cern.ch/LEPEWWG/.
  42. [42]
    A. Sirlin, Radiative corrections in the SU(2)L × U(1) theory: a simple renormalization framework, Phys. Rev. D 22 (1980) 971 [INSPIRE].ADSGoogle Scholar
  43. [43]
    W. Marciano and A. Sirlin, Radiative corrections to neutrino induced neutral current phenomena in the SU(2)L × U(1) theory, Phys. Rev. D 22 (1980) 2695 [Erratum ibid. D 31 (1985) 213] [INSPIRE].
  44. [44]
    D.Y. Bardin, P.K. Khristova and O. Fedorenko, On the lowest order electroweak corrections to spin 1/2 fermion scattering. 1. The one loop diagrammar, Nucl. Phys. B 175 (1980) 435 [INSPIRE].ADSGoogle Scholar
  45. [45]
    D.Y. Bardin, P.K. Khristova and O. Fedorenko, On the lowest order electroweak corrections to spin 1/2 fermion scattering. 2. The one loop amplitudes, Nucl. Phys. B 197 (1982) 1 [INSPIRE].ADSGoogle Scholar
  46. [46]
    M. Awramik, M. Czakon, A. Freitas and G. Weiglein, Precise prediction for the W boson mass in the standard model, Phys. Rev. D 69 (2004) 053006 [hep-ph/0311148] [INSPIRE].ADSGoogle Scholar
  47. [47]
    A. Djouadi and C. Verzegnassi, Virtual very heavy top effects in LEP/SLC precision measurements, Phys. Lett. B 195 (1987) 265 [INSPIRE].ADSGoogle Scholar
  48. [48]
    A. Djouadi, O(αα s) vacuum polarization functions of the standard model gauge bosons, Nuovo Cim. A 100 (1988) 357 [INSPIRE].ADSGoogle Scholar
  49. [49]
    B.A. Kniehl, Two loop corrections to the vacuum polarizations in perturbative QCD, Nucl. Phys. B 347 (1990) 86 [INSPIRE].ADSGoogle Scholar
  50. [50]
    F. Halzen and B.A. Kniehl, Δr beyond one loop, Nucl. Phys. B 353 (1991) 567 [INSPIRE].ADSGoogle Scholar
  51. [51]
    B.A. Kniehl and A. Sirlin, Dispersion relations for vacuum polarization functions in electroweak physics, Nucl. Phys. B 371 (1992) 141 [INSPIRE].ADSGoogle Scholar
  52. [52]
    B.A. Kniehl and A. Sirlin, On the effect of the \( t\overline{t} \) threshold on electroweak parameters, Phys. Rev. D 47 (1993) 883 [INSPIRE].ADSGoogle Scholar
  53. [53]
    A. Djouadi and P. Gambino, Electroweak gauge bosons selfenergies: complete QCD corrections, Phys. Rev. D 49 (1994) 3499 [Erratum ibid. D 53 (1996) 4111] [hep-ph/9309298] [INSPIRE].
  54. [54]
    L. Avdeev, J. Fleischer, S. Mikhailov and O. Tarasov, \( O\left( {\alpha \alpha_S^2} \right) \) correction to the electroweak ρ parameter, Phys. Lett. B 336 (1994) 560 [Erratum ibid. B 349 (1995) 597-598] [hep-ph/9406363] [INSPIRE].
  55. [55]
    K. Chetyrkin, J.H. Kuhn and M. Steinhauser, Corrections of order \( \mathcal{O}\left( {{G_F}M_t^2\alpha_s^2} \right) \) to the ρ parameter, Phys. Lett. B 351 (1995) 331 [hep-ph/9502291] [INSPIRE].ADSGoogle Scholar
  56. [56]
    K. Chetyrkin, J.H. Kuhn and M. Steinhauser, QCD corrections from top quark to relations between electroweak parameters to order \( \alpha_S^2 \), Phys. Rev. Lett. 75 (1995) 3394 [hep-ph/9504413] [INSPIRE].ADSGoogle Scholar
  57. [57]
    R. Barbieri, M. Beccaria, P. Ciafaloni, G. Curci and A. Vicere, Radiative correction effects of a very heavy top, Phys. Lett. B 288 (1992) 95 [Erratum ibid. B 312 (1993) 511] [hep-ph/9205238] [INSPIRE].
  58. [58]
    R. Barbieri, M. Beccaria, P. Ciafaloni, G. Curci and A. Vicere, Two loop heavy top effects in the standard model, Nucl. Phys. B 409 (1993) 105 [INSPIRE].ADSGoogle Scholar
  59. [59]
    J. Fleischer, O. Tarasov and F. Jegerlehner, Two loop heavy top corrections to the rho parameter: a simple formula valid for arbitrary Higgs mass, Phys. Lett. B 319 (1993) 249 [INSPIRE].ADSGoogle Scholar
  60. [60]
    J. Fleischer, O. Tarasov and F. Jegerlehner, Two loop large top mass corrections to electroweak parameters: analytic results valid for arbitrary Higgs mass, Phys. Rev. D 51 (1995) 3820 [INSPIRE].ADSGoogle Scholar
  61. [61]
    G. Degrassi, P. Gambino and A. Vicini, Two loop heavy top effects on the m Z -m W interdependence, Phys. Lett. B 383 (1996) 219 [hep-ph/9603374] [INSPIRE].ADSGoogle Scholar
  62. [62]
    G. Degrassi, P. Gambino and A. Sirlin, Precise calculation of M W , sin2 θ W(M Z) and sin2 \( \theta_{\mathrm{eff}}^{\mathrm{lept}} \), Phys. Lett. B 394 (1997) 188 [hep-ph/9611363] [INSPIRE].ADSGoogle Scholar
  63. [63]
    G. Degrassi and P. Gambino, Two loop heavy top corrections to the Z 0 boson partial widths, Nucl. Phys. B 567 (2000) 3 [hep-ph/9905472] [INSPIRE].ADSGoogle Scholar
  64. [64]
    A. Freitas, W. Hollik, W. Walter and G. Weiglein, Complete fermionic two loop results for the M W -M Z interdependence, Phys. Lett. B 495 (2000) 338 [Erratum ibid. B 570 (2003) 260-264] [hep-ph/0007091] [INSPIRE].
  65. [65]
    A. Freitas, W. Hollik, W. Walter and G. Weiglein, Electroweak two loop corrections to the M W -M Z mass correlation in the standard model, Nucl. Phys. B 632 (2002) 189 [Erratum ibid. B 666 (2003) 305-307] [hep-ph/0202131] [INSPIRE].
  66. [66]
    M. Awramik and M. Czakon, Complete two loop bosonic contributions to the muon lifetime in the standard model, Phys. Rev. Lett. 89 (2002) 241801 [hep-ph/0208113] [INSPIRE].ADSGoogle Scholar
  67. [67]
    A. Onishchenko and O. Veretin, Two loop bosonic electroweak corrections to the muon lifetime and M Z -M W interdependence, Phys. Lett. B 551 (2003) 111 [hep-ph/0209010] [INSPIRE].ADSGoogle Scholar
  68. [68]
    M. Awramik, M. Czakon, A. Onishchenko and O. Veretin, Bosonic corrections to Δr at the two loop level, Phys. Rev. D 68 (2003) 053004 [hep-ph/0209084] [INSPIRE].ADSGoogle Scholar
  69. [69]
    M. Awramik and M. Czakon, Two loop electroweak bosonic corrections to the muon decay lifetime, Nucl. Phys. Proc. Suppl. 116 (2003) 238 [hep-ph/0211041] [INSPIRE].ADSGoogle Scholar
  70. [70]
    M. Awramik and M. Czakon, Complete two loop electroweak contributions to the muon lifetime in the standard model, Phys. Lett. B 568 (2003) 48 [hep-ph/0305248] [INSPIRE].ADSGoogle Scholar
  71. [71]
    J. van der Bij, K. Chetyrkin, M. Faisst, G. Jikia and T. Seidensticker, Three loop leading top mass contributions to the rho parameter, Phys. Lett. B 498 (2001) 156 [hep-ph/0011373] [INSPIRE].ADSGoogle Scholar
  72. [72]
    M. Faisst, J.H. Kuhn, T. Seidensticker and O. Veretin, Three loop top quark contributions to the ρ parameter, Nucl. Phys. B 665 (2003) 649 [hep-ph/0302275] [INSPIRE].ADSGoogle Scholar
  73. [73]
    G. Weiglein, Results for precision observables in the electroweak standard model at two loop order and beyond, Acta Phys. Polon. B 29 (1998) 2735 [hep-ph/9807222] [INSPIRE].ADSGoogle Scholar
  74. [74]
    R. Boughezal, J. Tausk and J. van der Bij, Three-loop electroweak correction to the Rho parameter in the large Higgs mass limit, Nucl. Phys. B 713 (2005) 278 [hep-ph/0410216] [INSPIRE].ADSGoogle Scholar
  75. [75]
    R. Boughezal, J. Tausk and J. van der Bij, Three-loop electroweak corrections to the W-boson mass and sin2 \( \theta_{\mathrm{eff}}^{\mathrm{lept}} \) in the large Higgs mass limit, Nucl. Phys. B 725 (2005) 3 [hep-ph/0504092] [INSPIRE].ADSGoogle Scholar
  76. [76]
    Y. Schröder and M. Steinhauser, Four-loop singlet contribution to the ρ parameter, Phys. Lett. B 622 (2005) 124 [hep-ph/0504055] [INSPIRE].ADSGoogle Scholar
  77. [77]
    K. Chetyrkin, M. Faisst, J.H. Kuhn, P. Maierhofer and C. Sturm, Four-loop QCD corrections to the ρ parameter, Phys. Rev. Lett. 97 (2006) 102003 [hep-ph/0605201] [INSPIRE].ADSGoogle Scholar
  78. [78]
    R. Boughezal and M. Czakon, Single scale tadpoles and \( O\left( {{G_F}m_t^2\alpha_s^3} \right) \) corrections to the ρ parameter, Nucl. Phys. B 755 (2006) 221 [hep-ph/0606232] [INSPIRE].ADSGoogle Scholar
  79. [79]
    D.Y. Bardin and G. Passarino, The standard model in the making: precision study of the electroweak interactions, Oxford University Press, Oxford U.K. (1999).Google Scholar
  80. [80]
    M. Awramik, M. Czakon, A. Freitas and G. Weiglein, Complete two-loop electroweak fermionic corrections to sin2 \( \theta_{\mathrm{eff}}^{\mathrm{lept}} \) and indirect determination of the Higgs boson mass, Phys. Rev. Lett. 93 (2004) 201805 [hep-ph/0407317] [INSPIRE].ADSGoogle Scholar
  81. [81]
    M. Awramik, M. Czakon and A. Freitas, Electroweak two-loop corrections to the effective weak mixing angle, JHEP 11 (2006) 048 [hep-ph/0608099] [INSPIRE].ADSGoogle Scholar
  82. [82]
    M. Awramik, M. Czakon, A. Freitas and B. Kniehl, Two-loop electroweak fermionic corrections to sin2 \( \theta_{\mathrm{eff}}^{{b\overline{b}}} \), Nucl. Phys. B 813 (2009) 174 [arXiv:0811.1364] [INSPIRE].ADSGoogle Scholar
  83. [83]
    A. Freitas, private communication.Google Scholar
  84. [84]
    ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group Collaboration, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].ADSGoogle Scholar
  85. [85]
    ALEPH, CDF, D0, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, Tevatron Electroweak Working Group, SLD Electroweak and Heavy Flavour Groups Collaboration, Precision electroweak measurements and constraints on the standard model, arXiv:1012.2367 [INSPIRE].
  86. [86]
    K. Chetyrkin, J.H. Kuhn and A. Kwiatkowski, QCD corrections to the e + e cross-section and the Z boson decay rate, hep-ph/9503396 [INSPIRE].
  87. [87]
    P. Baikov, K. Chetyrkin, J. Kuhn and J. Rittinger, Complete \( \mathcal{O}\left( {\alpha_s^4} \right) \) QCD corrections to hadronic Z-decays, Phys. Rev. Lett. 108 (2012) 222003 [arXiv:1201.5804] [INSPIRE].ADSGoogle Scholar
  88. [88]
    A. Czarnecki and J.H. Kuhn, Nonfactorizable QCD and electroweak corrections to the hadronic Z boson decay rate, Phys. Rev. Lett. 77 (1996) 3955 [hep-ph/9608366] [INSPIRE].ADSGoogle Scholar
  89. [89]
    R. Harlander, T. Seidensticker and M. Steinhauser, Complete corrections of O(αα s) to the decay of the Z boson into bottom quarks, Phys. Lett. B 426 (1998) 125 [hep-ph/9712228] [INSPIRE].ADSGoogle Scholar
  90. [90]
    D.Y. Bardin, S. Riemann and T. Riemann, Electroweak one loop corrections to the decay of the charged vector boson, Z. Phys. C 32 (1986) 121 [INSPIRE].ADSGoogle Scholar
  91. [91]
    CDF, D0 collaboration, T.E.W. Group, 2012 update of the combination of CDF and D0 results for the mass of the W boson, arXiv:1204.0042 [INSPIRE].
  92. [92]
    UTfit collaboration, M. Bona et al., The 2004 UTfit collaboration report on the status of the unitarity triangle in the standard model, JHEP 07 (2005) 028 [hep-ph/0501199] [INSPIRE].ADSGoogle Scholar
  93. [93]
    J. Erler, Tests of the electroweak standard model, arXiv:1209.3324 [INSPIRE].
  94. [94]
    O. Eberhardt et al., Impact of a Higgs boson at a mass of 126 GeV on the standard model with three and four fermion generations, Phys. Rev. Lett. 109 (2012) 241802 [arXiv:1209.1101] [INSPIRE].ADSGoogle Scholar
  95. [95]
    M. Baak et al., The electroweak fit of the standard model after the discovery of a new boson at the LHC, Eur. Phys. J. C 72 (2012) 2205 [arXiv:1209.2716] [INSPIRE].ADSGoogle Scholar
  96. [96]
    M. Baak and R. Kogler, The global electroweak standard model fit after the Higgs discovery, arXiv:1306.0571 [INSPIRE].
  97. [97]
    D. Kennedy and B. Lynn, Electroweak radiative corrections with an effective lagrangian: four fermion processes, Nucl. Phys. B 322 (1989) 1 [INSPIRE].ADSGoogle Scholar
  98. [98]
    D. Kennedy, B. Lynn, C. Im and R. Stuart, Electroweak cross-sections and asymmetries at the Z 0, Nucl. Phys. B 321 (1989) 83 [INSPIRE].ADSGoogle Scholar
  99. [99]
    M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].ADSGoogle Scholar
  100. [100]
    I. Maksymyk, C. Burgess and D. London, Beyond S, T and U, Phys. Rev. D 50 (1994) 529 [hep-ph/9306267] [INSPIRE].ADSGoogle Scholar
  101. [101]
    C. Burgess, S. Godfrey, H. Konig, D. London and I. Maksymyk, A global fit to extended oblique parameters, Phys. Lett. B 326 (1994) 276 [hep-ph/9307337] [INSPIRE].ADSGoogle Scholar
  102. [102]
    C. Burgess, S. Godfrey, H. Konig, D. London and I. Maksymyk, Model independent global constraints on new physics, Phys. Rev. D 49 (1994) 6115 [hep-ph/9312291] [INSPIRE].ADSGoogle Scholar
  103. [103]
    G. Altarelli, R. Barbieri and F. Caravaglios, The epsilon variables for electroweak precision tests: A Reappraisal, Phys. Lett. B 349 (1995) 145 [INSPIRE].ADSGoogle Scholar
  104. [104]
    G. Altarelli, R. Barbieri and F. Caravaglios, Electroweak precision tests: a concise review, Int. J. Mod. Phys. A 13 (1998) 1031 [hep-ph/9712368] [INSPIRE].ADSGoogle Scholar
  105. [105]
    P. Bamert, C. Burgess, J.M. Cline, D. London and E. Nardi, R b and new physics: a comprehensive analysis, Phys. Rev. D 54 (1996) 4275 [hep-ph/9602438] [INSPIRE].ADSGoogle Scholar
  106. [106]
    H.E. Haber and H.E. Logan, Radiative corrections to the \( Zb\overline{b} \) vertex and constraints on extended Higgs sectors, Phys. Rev. D 62 (2000) 015011 [hep-ph/9909335] [INSPIRE].ADSGoogle Scholar
  107. [107]
    D. Choudhury, T.M. Tait and C. Wagner, Beautiful mirrors and precision electroweak data, Phys. Rev. D 65 (2002) 053002 [hep-ph/0109097] [INSPIRE].ADSGoogle Scholar
  108. [108]
    K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for \( Zb\overline{b} \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].ADSGoogle Scholar
  109. [109]
    A. Djouadi, G. Moreau and F. Richard, Resolving the \( A_{\mathrm{FB}}^{\mathrm{b}} \) puzzle in an extra dimensional model with an extended gauge structure, Nucl. Phys. B 773 (2007) 43 [hep-ph/0610173] [INSPIRE].ADSGoogle Scholar
  110. [110]
    F. del Aguila, J. de Blas and M. Pérez-Victoria, Electroweak limits on general new vector bosons, JHEP 09 (2010) 033 [arXiv:1005.3998] [INSPIRE].Google Scholar
  111. [111]
    L. Da Rold, Solving the \( A_{FB}^b \) anomaly in natural composite models, JHEP 02 (2011) 034 [arXiv:1009.2392] [INSPIRE].Google Scholar
  112. [112]
    E. Alvarez, L. Da Rold and A. Szynkman, A composite Higgs model analysis of forward-backward asymmetries in the production of tops at Tevatron and bottoms at LEP and SLC, JHEP 05 (2011) 070 [arXiv:1011.6557] [INSPIRE].ADSGoogle Scholar
  113. [113]
    R. Dermisek, S.-G. Kim and A. Raval, New vector boson near the Z-pole and the puzzle in precision electroweak data, Phys. Rev. D 84 (2011) 035006 [arXiv:1105.0773] [INSPIRE].ADSGoogle Scholar
  114. [114]
    A. Djouadi, G. Moreau and F. Richard, Forward-backward asymmetries of the bottom and top quarks in warped extra-dimensional models: LHC predictions from the LEP and Tevatron anomalies, Phys. Lett. B 701 (2011) 458 [arXiv:1105.3158] [INSPIRE].ADSGoogle Scholar
  115. [115]
    R. Dermisek, S.-G. Kim and A. Raval, Znear the Z-pole, Phys. Rev. D 85 (2012) 075022 [arXiv:1201.0315] [INSPIRE].ADSGoogle Scholar
  116. [116]
    D. Guadagnoli and G. Isidori, B(B sμ + μ ) as an electroweak precision test, arXiv:1302.3909 [INSPIRE].
  117. [117]
    K. Kumar, W. Shepherd, T.M. Tait and R. Vega-Morales, Beautiful mirrors at the LHC, JHEP 08 (2010) 052 [arXiv:1004.4895] [INSPIRE].ADSGoogle Scholar
  118. [118]
    B. Batell, S. Gori and L.-T. Wang, Higgs couplings and precision electroweak data, JHEP 01 (2013) 139 [arXiv:1209.6382] [INSPIRE].ADSGoogle Scholar
  119. [119]
    R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev. D 76 (2007) 115008 [arXiv:0706.0432] [INSPIRE].ADSGoogle Scholar
  120. [120]
    A. Falkowski, S. Rychkov and A. Urbano, What if the Higgs couplings to W and Z bosons are larger than in the standard model?, JHEP 04 (2012) 073 [arXiv:1202.1532] [INSPIRE].ADSGoogle Scholar
  121. [121]
    A. Falkowski, F. Riva and A. Urbano, Higgs at last, arXiv:1303.1812 [INSPIRE].
  122. [122]
    C. Grojean, O. Matsedonskyi and G. Panico, Light top partners and precision physics, arXiv:1306.4655 [INSPIRE].
  123. [123]
    W. Buchmüller and D. Wyler, Effective lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].ADSGoogle Scholar
  124. [124]
    F. del Aguila and J. de Blas, Electroweak constraints on new physics, Fortsch. Phys. 59 (2011) 1036 [arXiv:1105.6103] [INSPIRE].ADSGoogle Scholar
  125. [125]
    C. Grojean, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group scaling of Higgs operators and Γ(hγγ), JHEP 04 (2013) 016 [arXiv:1301.2588] [INSPIRE].MathSciNetADSGoogle Scholar
  126. [126]
    J. Elias-Miro, J. Espinosa, E. Masso and A. Pomarol, Renormalization of dimension-six operators relevant for the Higgs decays hγγ, γZ, JHEP 08 (2013) 033 [arXiv:1302.5661] [INSPIRE].ADSGoogle Scholar
  127. [127]
    E.E. Jenkins, A.V. Manohar and M. Trott, On gauge invariance and minimal coupling, arXiv:1305.0017 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Marco Ciuchini
    • 1
  • Enrico Franco
    • 2
  • Satoshi Mishima
    • 2
    • 3
  • Luca Silvestrini
    • 2
  1. 1.INFN, Sezione di Roma TreRomaItaly
  2. 2.INFN, Sezione di RomaRomaItaly
  3. 3.Dipartimento di FisicaUniversità di Roma “La Sapienza”RomaItaly

Personalised recommendations