Advertisement

Dirac-Born-Infeld-Volkov-Akulov and deformation of supersymmetry

  • Eric Bergshoeff
  • Frederik Coomans
  • Renata Kallosh
  • C. S. Shahbazi
  • Antoine Van Proeyen
Article

Abstract

We deform the action and the supersymmetry transformations of the d = 10 and d = 4 Maxwell supermultiplets so that at each order of the deformation the theory has 16 Maxwell multiplet deformed supersymmetries as well as 16 Volkov-Akulov type non-linear supersymmetries. The result agrees with the expansion in the string tension of the explicit action of the Dirac-Born-Infeld model and its supersymmetries, extracted from D9 and D3 superbranes, respectively. The half-maximal Dirac-Born-Infeld models with 8 Maxwell supermultiplet deformed supersymmetries and 8 Volkov-Akulov type supersymmetries are described by a new class of d = 6 vector branes related to chiral (2,0) supergravity, which we denote as ‘Vp-branes’. We use a space-filling V5 superbrane for the d = 6 model and a V3 superbrane for the d = 4 half-maximal Dirac-Born-Infeld (DBI) models. In this way we present a completion to all orders of the deformation of the Maxwell supermultiplets with maximal 16+16 supersymmetries in d = 10 and 4, and half-maximal 8+8 supersymmetries in d = 6 and 4.

Keywords

Extended Supersymmetry D-branes 

References

  1. [1]
    S. Ferrara, R. Kallosh and A. Van Proeyen, Conjecture on Hidden Superconformal Symmetry of N = 4 Supergravity, Phys. Rev. D 87 (2013) 025004 [arXiv:1209.0418] [INSPIRE].ADSGoogle Scholar
  2. [2]
    B. de Wit, S. Katmadas and M. van Zalk, New supersymmetric higher-derivative couplings: full N = 2 superspace does not count!, JHEP 01 (2011) 007 [arXiv:1010.2150] [INSPIRE].CrossRefGoogle Scholar
  3. [3]
    W. Chemissany, S. Ferrara, R. Kallosh and C. Shahbazi, N = 2 Supergravity Counterterms, Off and On Shell, JHEP 12 (2012) 089 [arXiv:1208.4801] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    E. Bergshoeff, M. Rakowski and E. Sezgin, Higher derivative super Yang-Mills theories, Phys. Lett. B 185 (1987) 371 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    M. Born and L. Infeld, Foundations of the new field theory, Proc. Roy. Soc. Lond. A 144 (1934) 425 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    P.A. Dirac, An Extensible model of the electron, Proc. Roy. Soc. Lond. A 268 (1962) 57 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    S. Deser and R. Puzalowski, Supersymmetric nonpolynomial vector multiplets and causal propagation, J. Phys. A 13 (1980) 2501 [INSPIRE].MathSciNetADSGoogle Scholar
  8. [8]
    S. Cecotti and S. Ferrara, Supersymmetric Born-Infeld lagrangians, Phys. Lett. B 187 (1987) 335 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    R. Metsaev, M. Rakhmanov and A.A. Tseytlin, The Born-Infeld action as the effective action in the open superstring theory, Phys. Lett. B 193 (1987) 207 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    J. Bagger and A. Galperin, A New Goldstone multiplet for partially broken supersymmetry, Phys. Rev. D 55 (1997) 1091 [hep-th/9608177] [INSPIRE].MathSciNetADSGoogle Scholar
  11. [11]
    M. Roček and A.A. Tseytlin, Partial breaking of global D = 4 supersymmetry, constrained superfields and three-brane actions, Phys. Rev. D 59 (1999) 106001 [hep-th/9811232] [INSPIRE].ADSGoogle Scholar
  12. [12]
    A.A. Tseytlin, Born-Infeld action, supersymmetry and string theory, hep-th/9908105 [INSPIRE].
  13. [13]
    S.V. Ketov, A Manifestly N = 2 supersymmetric Born-Infeld action, Mod. Phys. Lett. A 14 (1999) 501 [hep-th/9809121] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    S. Bellucci, E. Ivanov and S. Krivonos, N = 2 and N = 4 supersymmetric Born-Infeld theories from nonlinear realizations, Phys. Lett. B 502 (2001) 279 [hep-th/0012236] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    S.V. Ketov, Many faces of Born-Infeld theory, hep-th/0108189 [INSPIRE].
  16. [16]
    S.M. Kuzenko and S. Theisen, Supersymmetric duality rotations, JHEP 03 (2000) 034 [hep-th/0001068] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    S.M. Kuzenko and S. Theisen, Nonlinear selfduality and supersymmetry, Fortsch. Phys. 49 (2001) 273 [hep-th/0007231] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  18. [18]
    S. Bellucci, E. Ivanov and S. Krivonos, Towards the complete N = 2 superfield Born-Infeld action with partially broken N = 4 supersymmetry, Phys. Rev. D 64 (2001) 025014 [hep-th/0101195] [INSPIRE].MathSciNetADSGoogle Scholar
  19. [19]
    S.F. Kerstan, Supersymmetric Born-Infeld from the D9-brane, Class. Quant. Grav. 19 (2002) 4525 [hep-th/0204225] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  20. [20]
    E. Ivanov and B. Zupnik, New representation for Lagrangians of selfdual nonlinear electrodynamics, hep-th/0202203 [INSPIRE].
  21. [21]
    N. Berkovits and V. Pershin, Supersymmetric Born-Infeld from the pure spinor formalism of the open superstring, JHEP 01 (2003) 023 [hep-th/0205154] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    E. Ivanov and B. Zupnik, New approach to nonlinear electrodynamics: dualities as symmetries of interaction, Phys. Atom. Nucl. 67 (2004) 2188 [hep-th/0303192] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    D.P. Sorokin, Superbranes and superembeddings, Phys. Rept. 329 (2000) 1 [hep-th/9906142] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    P. Pasti, D.P. Sorokin and M. Tonin, Superembeddings, partial supersymmetry breaking and superbranes, Nucl. Phys. B 591 (2000) 109 [hep-th/0007048] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    J.J.M. Carrasco, R. Kallosh and R. Roiban, Covariant procedures for perturbative non-linear deformation of duality-invariant theories, Phys. Rev. D 85 (2012) 025007 [arXiv:1108.4390] [INSPIRE].ADSGoogle Scholar
  26. [26]
    W. Chemissany, R. Kallosh and T. Ortín, Born-Infeld with Higher Derivatives, Phys. Rev. D 85 (2012) 046002 [arXiv:1112.0332] [INSPIRE].ADSGoogle Scholar
  27. [27]
    J. Broedel, J.J.M. Carrasco, S. Ferrara, R. Kallosh and R. Roiban, N = 2 Supersymmetry and U(1)-Duality, Phys. Rev. D 85 (2012) 125036 [arXiv:1202.0014] [INSPIRE].ADSGoogle Scholar
  28. [28]
    P. Pasti, D. Sorokin and M. Tonin, Covariant actions for models with non-linear twisted self-duality, Phys. Rev. D 86 (2012) 045013 [arXiv:1205.4243] [INSPIRE].ADSGoogle Scholar
  29. [29]
    E. Ivanov and B. Zupnik, Bispinor Auxiliary Fields in Duality-Invariant Electrodynamics Revisited, Phys. Rev. D 87 (2013) 065023 [arXiv:1212.6637] [INSPIRE].ADSGoogle Scholar
  30. [30]
    S.M. Kuzenko, Duality rotations in supersymmetric nonlinear electrodynamics revisited, JHEP 03 (2013) 153 [arXiv:1301.5194] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    P. Aschieri and S. Ferrara, Constitutive relations and Schroedingers formulation of nonlinear electromagnetic theories, JHEP 05 (2013) 087 [arXiv:1302.4737] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    D. Volkov and V. Akulov, Is the Neutrino a Goldstone Particle?, Phys. Lett. B 46 (1973) 109 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    M. Cederwall, A. von Gussich, B.E. Nilsson and A. Westerberg, The Dirichlet super three-brane in ten-dimensional type IIB supergravity, Nucl. Phys. B 490 (1997) 163 [hep-th/9610148] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    M. Cederwall, A. von Gussich, B.E. Nilsson, P. Sundell and A. Westerberg, The Dirichlet super p-branes in ten-dimensional type IIA and IIB supergravity, Nucl. Phys. B 490 (1997) 179 [hep-th/9611159] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    E. Bergshoeff and P. Townsend, Super D-branes, Nucl. Phys. B 490 (1997) 145 [hep-th/9611173] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    M. Aganagic, C. Popescu and J.H. Schwarz, Gauge invariant and gauge fixed D-brane actions, Nucl. Phys. B 495 (1997) 99 [hep-th/9612080] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    E. Bergshoeff, R. Kallosh, T. Ortín and G. Papadopoulos, Kappa symmetry, supersymmetry and intersecting branes, Nucl. Phys. B 502 (1997) 149 [hep-th/9705040] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    R. Kallosh, Volkov-Akulov theory and D-branes, hep-th/9705118 [INSPIRE].
  39. [39]
    E.A. Bergshoeff and F. Riccioni, Heterotic wrapping rules, JHEP 01 (2013) 005 [arXiv:1210.1422] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio and R. Gatto, Nonlinear realization of supersymmetry algebra from supersymmetric constraint, Phys. Lett. B 220 (1989) 569 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    Z. Komargodski and N. Seiberg, From Linear SUSY to Constrained Superfields, JHEP 09 (2009) 066 [arXiv:0907.2441] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    S.M. Kuzenko and S.J. Tyler, On the Goldstino actions and their symmetries, JHEP 05 (2011) 055 [arXiv:1102.3043] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    N. Beisert, H. Elvang, D.Z. Freedman, M. Kiermaier, A. Morales and S. Stieberger, E 7(7) constraints on counterterms in N = 8 supergravity, Phys. Lett. B 694 (2010) 265 [arXiv:1009.1643] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    L. Brink, J.H. Schwarz and J. Scherk, Supersymmetric Yang-Mills Theories, Nucl. Phys. B 121 (1977) 77 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    F. Gliozzi, J. Scherk and D.I. Olive, Supersymmetry, Supergravity Theories and the Dual Spinor Model, Nucl. Phys. B 122 (1977) 253 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M. de Roo, Matter Coupling in N = 4 Supergravity, Nucl. Phys. B 255 (1985) 515 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    K. Behrndt, E. Bergshoeff, D. Roest and P. Sundell, Massive dualities in six-dimensions, Class. Quant. Grav. 19 (2002) 2171 [hep-th/0112071] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    J.J.M. Carrasco and R. Kallosh, Hidden Supersymmetry May Imply Duality Invariance, arXiv:1303.5663 [INSPIRE].
  49. [49]
    S.M. Kuzenko and S.A. McCarthy, On the component structure of N = 1 supersymmetric nonlinear electrodynamics, JHEP 05 (2005) 012 [hep-th/0501172] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    H. Liu, H. Lüo, M. Luo and L. Wang, Leading Order Actions of Goldstino Fields, Eur. Phys. J. C 71 (2011) 1793 [arXiv:1005.0231] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    A. Zheltukhin, On Equivalence of the Komargodski-Seiberg Action to the Volkov-Akulov Action, arXiv:1009.2166 [INSPIRE].
  52. [52]
    S.M. Kuzenko and S.J. Tyler, Relating the Komargodski-Seiberg and Akulov-Volkov actions: exact nonlinear field redefinition, Phys. Lett. B 698 (2011) 319 [arXiv:1009.3298] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge, U.K. (2012).CrossRefzbMATHGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Eric Bergshoeff
    • 1
  • Frederik Coomans
    • 2
  • Renata Kallosh
    • 3
  • C. S. Shahbazi
    • 4
  • Antoine Van Proeyen
    • 2
  1. 1.Centre for Theoretical PhysicsUniversity of GroningenGroningenThe Netherlands
  2. 2.Instituut voor Theoretische FysicaKatholieke Universiteit LeuvenLeuvenBelgium
  3. 3.Stanford Institute for Theoretical Physics and Department of PhysicsStanford UniversityStanfordU.S.A.
  4. 4.Instituto de Física Teórica UAM/CSICMadridSpain

Personalised recommendations