Advertisement

3d dualities from 4d dualities for orthogonal groups

  • Ofer Aharony
  • Shlomo S. RazamatEmail author
  • Nathan Seiberg
  • Brian Willett
Open Access
Article

Abstract

We extend recent work on the relation of 4d and 3d IR dualities of supersymmetric gauge theories with four supercharges to the case of orthogonal gauge groups. The distinction between different SO(N) gauge theories in 4d plays an important role in this relation. We show that the 4d duality leads to a 3d duality between an SO(N c ) gauge theory with N f flavors and an SO(N f N c + 2) theory with N f flavors and extra singlets, and we derive its generalization in the presence of Chern-Simons terms. There are two different O(N) theories in 3d, which we denote by O(N)±, and we also show that the O(N c ) gauge theory is dual to a Spin(N f N c + 2) theory, and derive from 4d the known duality between O(N c )+ and O(N f N c + 2)+. We verify the consistency of these 3d dualities by various methods, including index computations.

Keywords

Supersymmetry and Duality Duality in Gauge Field Theories Supersymmetric gauge theory Field Theories in Lower Dimensions 

References

  1. [1]
    N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    K.A. Intriligator and N. Seiberg, Duality, monopoles, dyons, confinement and oblique confinement in supersymmetric SO(N c) gauge theories, Nucl. Phys. B 444 (1995) 125 [hep-th/9503179] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    K.A. Intriligator and N. Seiberg, Lectures on supersymmetric gauge theories and electric-magnetic duality, Nucl. Phys. Proc. Suppl. 45BC (1996) 1 [hep-th/9509066] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  4. [4]
    M.J. Strassler, Duality, phases, spinors and monopoles in SO(N) and spin(N) gauge theories, JHEP 09 (1998) 017 [hep-th/9709081] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    O. Aharony, N. Seiberg and Y. Tachikawa, Reading between the lines of four-dimensional gauge theories, arXiv:1305.0318 [INSPIRE].
  6. [6]
    O. Aharony, S.S. Razamat, N. Seiberg and B. Willett, 3d dualities from 4d dualities, JHEP 07 (2013) 149 [arXiv:1305.3924] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    V. Niarchos, Seiberg dualities and the 3d/4d connection, JHEP 07 (2012) 075 [arXiv:1205.2086] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    K.A. Intriligator and N. Seiberg, Phases of N = 1 supersymmetric gauge theories and electric-magnetic triality, hep-th/9506084 [INSPIRE].
  9. [9]
    D. Gaiotto, G.W. Moore and A. Neitzke, Framed BPS States, arXiv:1006.0146 [INSPIRE].
  10. [10]
    F. Benini, C. Closset and S. Cremonesi, Comments on 3d Seiberg-like dualities, JHEP 10 (2011) 075 [arXiv:1108.5373] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    C. Hwang, K.-J. Park and J. Park, Evidence for Aharony duality for orthogonal gauge groups, JHEP 11 (2011) 011 [arXiv:1109.2828] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    O. Aharony and I. Shamir, On O(N c) D = 3 N = 2 supersymmetric QCD Theories, JHEP 12 (2011) 043 [arXiv:1109.5081] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    O. Aharony, A. Hanany, K.A. Intriligator, N. Seiberg and M. Strassler, Aspects of N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 499 (1997) 67 [hep-th/9703110] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    K. Intriligator and N. Seiberg, Aspects of 3d N = 2 Chern-Simons-Matter Theories, arXiv:1305.1633 [INSPIRE].
  15. [15]
    I. Affleck, J.A. Harvey and E. Witten, Instantons and (Super)Symmetry Breaking in (2+1)-Dimensions, Nucl. Phys. B 206 (1982) 413 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    N.M. Davies, T.J. Hollowood and V.V. Khoze, Monopoles, affine algebras and the gluino condensate, J. Math. Phys. 44 (2003) 3640 [hep-th/0006011] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  17. [17]
    N. Seiberg and E. Witten, Gauge dynamics and compactification to three-dimensions, hep-th/9607163 [INSPIRE].
  18. [18]
    N. Seiberg, Exact results on the space of vacua of four-dimensional SUSY gauge theories, Phys. Rev. D 49 (1994) 6857 [hep-th/9402044] [INSPIRE].MathSciNetADSGoogle Scholar
  19. [19]
    K.-M. Lee and P. Yi, Monopoles and instantons on partially compactified D-branes, Phys. Rev. D 56 (1997) 3711 [hep-th/9702107] [INSPIRE].MathSciNetADSGoogle Scholar
  20. [20]
    K.-M. Lee, Instantons and magnetic monopoles on R 3 × S 1 with arbitrary simple gauge groups, Phys. Lett. B 426 (1998) 323 [hep-th/9802012] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    N.M. Davies, T.J. Hollowood, V.V. Khoze and M.P. Mattis, Gluino condensate and magnetic monopoles in supersymmetric gluodynamics, Nucl. Phys. B 559 (1999) 123 [hep-th/9905015] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    J.M. Maldacena, G.W. Moore and N. Seiberg, D-brane charges in five-brane backgrounds, JHEP 10 (2001) 005 [hep-th/0108152] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].ADSGoogle Scholar
  24. [24]
    A. Kapustin, Seiberg-like duality in three dimensions for orthogonal gauge groups, arXiv:1104.0466 [INSPIRE].
  25. [25]
    S.G. Naculich, H. Riggs and H. Schnitzer, Group level duality in wzw models and Chern-Simons theory, Phys. Lett. B 246 (1990) 417 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    E. Mlawer, S.G. Naculich, H. Riggs and H. Schnitzer, Group level duality of WZW fusion coefficients and Chern-Simons link observables, Nucl. Phys. B 352 (1991) 863 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    T. Nakanishi and A. Tsuchiya, Level rank duality of WZW models in conformal field theory, Commun. Math. Phys. 144 (1992) 351 [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  28. [28]
    O. Aharony, IR duality in D = 3 N = 2 supersymmetric USp(2N c) and U(N c) gauge theories, Phys. Lett. B 404 (1997) 71 [hep-th/9703215] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    K.A. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories, Phys. Lett. B 387 (1996) 513 [hep-th/9607207] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    J. de Boer, K. Hori, H. Ooguri and Y. Oz, Mirror symmetry in three-dimensional gauge theories, quivers and D-branes, Nucl. Phys. B 493 (1997) 101 [hep-th/9611063] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    J. de Boer, K. Hori, Y. Oz and Z. Yin, Branes and mirror symmetry in N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 502 (1997) 107 [hep-th/9702154] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    D. Green, Z. Komargodski, N. Seiberg, Y. Tachikawa and B. Wecht, Exactly Marginal Deformations and Global Symmetries, JHEP 06 (2010) 106 [arXiv:1005.3546] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    C. Hwang, H. Kim, K.-J. Park and J. Park, Index computation for 3d Chern-Simons matter theory: test of Seiberg-like duality, JHEP 09 (2011) 037 [arXiv:1107.4942] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    J. Bhattacharya, S. Bhattacharyya, S. Minwalla and S. Raju, Indices for Superconformal Field Theories in 3,5 and 6 Dimensions, JHEP 02 (2008) 064 [arXiv:0801.1435] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    S. Kim, The Complete superconformal index for N = 6 Chern-Simons theory, Nucl. Phys. B 821 (2009) 241 [Erratum ibid. B 864 (2012) 884] [arXiv:0903.4172] [INSPIRE].
  36. [36]
    Y. Imamura and S. Yokoyama, Index for three dimensional superconformal field theories with general R-charge assignments, JHEP 04 (2011) 007 [arXiv:1101.0557] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    A. Kapustin and B. Willett, Generalized Superconformal Index for Three Dimensional Field Theories, arXiv:1106.2484 [INSPIRE].
  38. [38]
    T. Dimofte, D. Gaiotto and S. Gukov, 3-Manifolds and 3d Indices, arXiv:1112.5179 [INSPIRE].
  39. [39]
    C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Contact Terms, Unitarity and F-Maximization in Three-Dimensional Superconformal Theories, JHEP 10 (2012) 053 [arXiv:1205.4142] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Comments on Chern-Simons Contact Terms in Three Dimensions, JHEP 09 (2012) 091 [arXiv:1206.5218] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    A. Niemi and G. Semenoff, Axial Anomaly Induced Fermion Fractionization and Effective Gauge Theory Actions in Odd Dimensional Space-Times, Phys. Rev. Lett. 51 (1983) 2077 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    A. Redlich, Parity Violation and Gauge Noninvariance of the Effective Gauge Field Action in Three-Dimensions, Phys. Rev. D 29 (1984) 2366 [INSPIRE].MathSciNetADSGoogle Scholar
  43. [43]
    B.I. Zwiebel, Charging the Superconformal Index, JHEP 01 (2012) 116 [arXiv:1111.1773] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    A. Kapustin, Three-dimensional Avatars of Seiberg Duality, talk given at Simons Summer Workshop in Mathematics and Physics 2011, http://media.scgp.stonybrook.edu/video/video.php?f=20110810_1_qtp.mp4.
  45. [45]
    J. Park and K.-J. Park, Seiberg-like Dualities for 3d N = 2 Theories with SU(N) gauge group, arXiv:1305.6280 [INSPIRE].
  46. [46]
    F. Dolan, V. Spiridonov and G. Vartanov, From 4d superconformal indices to 3d partition functions, Phys. Lett. B 704 (2011) 234 [arXiv:1104.1787] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    A. Gadde and W. Yan, Reducing the 4d Index to the S 3 Partition Function, JHEP 12 (2012) 003 [arXiv:1104.2592] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    Y. Imamura, Relation between the 4d superconformal index and the S 3 partition function, JHEP 09 (2011) 133 [arXiv:1104.4482] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    G. Felder and A. Varchenko, The elliptic gamma function and SL(3, \( \mathbb{Z} \)) × Z 3, Adv. Math. 156 (2000) 44 [math/9907061].MathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    F. Dolan and H. Osborn, Applications of the Superconformal Index for Protected Operators and q-Hypergeometric Identities to N = 1 Dual Theories, Nucl. Phys. B 818 (2009) 137 [arXiv:0801.4947] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    V. Spiridonov and G. Vartanov, Elliptic hypergeometry of supersymmetric dualities II. Orthogonal groups, knots and vortices, arXiv:1107.5788 [INSPIRE].

Copyright information

© SISSA 2013

Authors and Affiliations

  • Ofer Aharony
    • 1
    • 2
  • Shlomo S. Razamat
    • 1
    Email author
  • Nathan Seiberg
    • 1
  • Brian Willett
    • 1
  1. 1.School of Natural SciencesInstitute for Advanced StudyPrincetonU.S.A.
  2. 2.Department of Particle Physics and AstrophysicsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations