Advertisement

Generalized gravitational entropy

  • Aitor LewkowyczEmail author
  • Juan Maldacena
Article

Abstract

We consider classical Euclidean gravity solutions with a boundary. The boundary contains a non-contractible circle. These solutions can be interpreted as computing the trace of a density matrix in the full quantum gravity theory, in the classical approximation. When the circle is contractible in the bulk, we argue that the entropy of this density matrix is given by the area of a minimal surface. This is a generalization of the usual black hole entropy formula to euclidean solutions without a Killing vector.

A particular example of this set up appears in the computation of the entanglement entropy of a subregion of a field theory with a gravity dual. In this context, the minimal area prescription was proposed by Ryu and Takayanagi. Our arguments explain their conjecture.

Keywords

AdS-CFT Correspondence Black Holes 

References

  1. [1]
    J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].MathSciNetADSzbMATHGoogle Scholar
  2. [2]
    J.M. Bardeen, B. Carter and S. Hawking, The four laws of black hole mechanics, Commun. Math. Phys. 31 (1973) 161 [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  3. [3]
    S. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    G. Gibbons and S. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].MathSciNetADSGoogle Scholar
  5. [5]
    T. Faulkner, The entanglement Renyi entropies of disjoint intervals in AdS/CFT, arXiv:1303.7221 [INSPIRE].
  6. [6]
    T. Hartman, Entanglement entropy at large central charge, arXiv:1303.6955 [INSPIRE].
  7. [7]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    T. Nishioka, S. Ryu and T. Takayanagi, Holographic entanglement entropy: an overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].MathSciNetGoogle Scholar
  9. [9]
    D.V. Fursaev, Entanglement entropy in quantum gravity and the Plateau groblem, Phys. Rev. D 77 (2008) 124002 [arXiv:0711.1221] [INSPIRE].MathSciNetADSGoogle Scholar
  10. [10]
    D.V. Fursaev, ‘Thermodynamicsof minimal surfaces and entropic origin of gravity, Phys. Rev. D 82 (2010) 064013 [Erratum ibid. D 86 (2012) 049903] [arXiv:1006.2623] [INSPIRE].ADSGoogle Scholar
  11. [11]
    D.V. Fursaev, Proof of the holographic formula for entanglement entropy, JHEP 09 (2006) 018 [hep-th/0606184] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].ADSGoogle Scholar
  13. [13]
    J.M. Maldacena and A. Strominger, AdS 3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    S. Deger, A. Kaya, E. Sezgin and P. Sundell, Spectrum of D = 6, N = 4b supergravity on AdS in three-dimensions ×S 3, Nucl. Phys. B 536 (1998) 110 [hep-th/9804166] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    S. Carlip and C. Teitelboim, The off-shell black hole, Class. Quant. Grav. 12 (1995) 1699 [gr-qc/9312002] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    M. Bañados, C. Teitelboim and J. Zanelli, Black hole entropy and the dimensional continuation of the Gauss-Bonnet theorem, Phys. Rev. Lett. 72 (1994) 957 [gr-qc/9309026] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  17. [17]
    L. Susskind and J. Uglum, Black hole entropy in canonical quantum gravity and superstring theory, Phys. Rev. D 50 (1994) 2700 [hep-th/9401070] [INSPIRE].MathSciNetADSGoogle Scholar
  18. [18]
    D.V. Fursaev and S.N. Solodukhin, On the description of the Riemannian geometry in the presence of conical defects, Phys. Rev. D 52 (1995) 2133 [hep-th/9501127] [INSPIRE].MathSciNetADSGoogle Scholar
  19. [19]
    W. Nelson, A comment on black hole entropy in string theory, Phys. Rev. D 50 (1994) 7400 [hep-th/9406011] [INSPIRE].ADSGoogle Scholar
  20. [20]
    R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427 [gr-qc/9307038] [INSPIRE].MathSciNetADSGoogle Scholar
  21. [21]
    V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].MathSciNetADSGoogle Scholar
  22. [22]
    V. Iyer and R.M. Wald, A comparison of Noether charge and Euclidean methods for computing the entropy of stationary black holes, Phys. Rev. D 52 (1995) 4430 [gr-qc/9503052] [INSPIRE].MathSciNetADSGoogle Scholar
  23. [23]
    S.S. Gubser and A. Nellore, Low-temperature behavior of the Abelian Higgs model in anti-de Sitter space, JHEP 04 (2009) 008 [arXiv:0810.4554] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Belin, A. Maloney and S. Matsuura, Holographic phases of Renyi entropies, arXiv:1306.2640 [INSPIRE].
  25. [25]
    I. Klebanov, private communication.Google Scholar
  26. [26]
    W. Unruh, G. Hayward, W. Israel and D. Mcmanus, Cosmic string loops are straight, Phys. Rev. Lett. 62 (1989) 2897 [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  27. [27]
    B. Boisseau, C. Charmousis and B. Linet, Dynamics of a selfgravitating thin cosmic string, Phys. Rev. D 55 (1997) 616 [gr-qc/9607029] [INSPIRE].ADSGoogle Scholar
  28. [28]
    C.G. Callan Jr. and F. Wilczek, On geometric entropy, Phys. Lett. B 333 (1994) 55 [hep-th/9401072] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 06 (2004) P06002 [hep-th/0405152] [INSPIRE].CrossRefGoogle Scholar
  30. [30]
    H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    L.-Y. Hung, R.C. Myers, M. Smolkin and A. Yale, Holographic calculations of Renyi entropy, JHEP 12 (2011) 047 [arXiv:1110.1084] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetADSzbMATHGoogle Scholar
  34. [34]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    T. Hartman and J. Maldacena, Time evolution of entanglement entropy from black hole interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    W. Israel, Thermo field dynamics of black holes, Phys. Lett. A 57 (1976) 107 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    D. Bak, M. Gutperle and S. Hirano, Three dimensional Janus and time-dependent black holes, JHEP 02 (2007) 068 [hep-th/0701108] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    D. Bak, M. Gutperle and A. Karch, Time dependent black holes and thermal equilibration, JHEP 12 (2007) 034 [arXiv:0708.3691] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    B. Freivogel et al., Inflation in AdS/CFT, JHEP 03 (2006) 007 [hep-th/0510046] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    V.E. Hubeny and M. Rangamani, Causal holographic information, JHEP 06 (2012) 114 [arXiv:1204.1698] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, The gravity dual of a density matrix, Class. Quant. Grav. 29 (2012) 155009 [arXiv:1204.1330] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    R. Bousso, S. Leichenauer and V. Rosenhaus, Light-sheets and AdS/CFT, Phys. Rev. D 86 (2012) 046009 [arXiv:1203.6619] [INSPIRE].ADSGoogle Scholar
  44. [44]
    L.-Y. Hung, R.C. Myers and M. Smolkin, On holographic entanglement entropy and higher curvature gravity, JHEP 04 (2011) 025 [arXiv:1101.5813] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    E. Bianchi and R.C. Myers, On the architecture of spacetime geometry, arXiv:1212.5183 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Department of PhysicsPrinceton UniversityPrincetonU.S.A.
  2. 2.School of Natural SciencesInstitute for Advanced StudyPrincetonU.S.A.

Personalised recommendations