Hamiltonian analysis of minimal massive gravity coupled to Galileon tadpole term

Article

Abstract

We perform the Hamiltonian analysis of minimal massive gravity coupled to the Galileon tadpole term. We determine all constraints and we argue that the physical degrees of freedom correspond to ten modes of the massive gravity together with 2(D − 3) Galileons so that given model is ghost free.

Keywords

Classical Theories of Gravity Models of Quantum Gravity 

References

  1. [1]
    C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of massive gravity, Phys. Rev. Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    S. Hassan and R.A. Rosen, Resolving the ghost problem in non-linear massive gravity, Phys. Rev. Lett. 108 (2012) 041101 [arXiv:1106.3344] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    S. Hassan and R.A. Rosen, On non-linear actions for massive gravity, JHEP 07 (2011) 009 [arXiv:1103.6055] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    S. Hassan, R.A. Rosen and A. Schmidt-May, Ghost-free massive gravity with a general reference metric, JHEP 02 (2012) 026 [arXiv:1109.3230] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    S. Hassan and R.A. Rosen, Bimetric gravity from ghost-free massive gravity, JHEP 02 (2012) 126 [arXiv:1109.3515] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    S. Hassan and R.A. Rosen, Confirmation of the secondary constraint and absence of ghost in massive gravity and bimetric gravity, JHEP 04 (2012) 123 [arXiv:1111.2070] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    A. Golovnev, On the Hamiltonian analysis of non-linear massive gravity, Phys. Lett. B 707 (2012) 404 [arXiv:1112.2134] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    J. Kluson, Comments about Hamiltonian formulation of non-linear massive gravity with Stückelberg fields, JHEP 06 (2012) 170 [arXiv:1112.5267] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    J. Kluson, Remark about Hamiltonian formulation of non-linear massive gravity in Stückelberg formalism, Phys. Rev. D 86 (2012) 124005 [arXiv:1202.5899] [INSPIRE].ADSGoogle Scholar
  10. [10]
    J. Kluson, Non-linear massive gravity with additional primary constraint and absence of ghosts, Phys. Rev. D 86 (2012) 044024 [arXiv:1204.2957] [INSPIRE].ADSGoogle Scholar
  11. [11]
    J. Kluson, Note about Hamiltonian formalism for general non-linear massive gravity action in Stückelberg formalism, arXiv:1209.3612 [INSPIRE].
  12. [12]
    C. de Rham, G. Gabadadze and A.J. Tolley, Ghost free massive gravity in the Stückelberg language, Phys. Lett. B 711 (2012) 190 [arXiv:1107.3820] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S. Hassan, A. Schmidt-May and M. von Strauss, Proof of consistency of nonlinear massive gravity in the Stückelberg formulation, Phys. Lett. B 715 (2012) 335 [arXiv:1203.5283] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M. Andrews, G. Goon, K. Hinterbichler, J. Stokes and M. Trodden, Massive gravity coupled to DBI Galileons is ghost free, arXiv:1303.1177 [INSPIRE].
  15. [15]
    G. Gabadadze, K. Hinterbichler, J. Khoury, D. Pirtskhalava and M. Trodden, A covariant master theory for novel Galilean invariant models and massive gravity, Phys. Rev. D 86 (2012) 124004 [arXiv:1208.5773] [INSPIRE].ADSGoogle Scholar
  16. [16]
    C. de Rham and A.J. Tolley, DBI and the Galileon reunited, JCAP 05 (2010) 015 [arXiv:1003.5917] [INSPIRE].CrossRefGoogle Scholar
  17. [17]
    K. Hinterbichler, M. Trodden and D. Wesley, Multi-field galileons and higher co-dimension branes, Phys. Rev. D 82 (2010) 124018 [arXiv:1008.1305] [INSPIRE].ADSGoogle Scholar
  18. [18]
    C. Deffayet, G. Esposito-Farese and A. Vikman, Covariant Galileon, Phys. Rev. D 79 (2009) 084003 [arXiv:0901.1314] [INSPIRE].ADSGoogle Scholar
  19. [19]
    C. Deffayet, S. Deser and G. Esposito-Farese, Generalized Galileons: all scalar models whose curved background extensions maintain second-order field equations and stress-tensors, Phys. Rev. D 80 (2009) 064015 [arXiv:0906.1967] [INSPIRE].ADSGoogle Scholar
  20. [20]
    E. Gourgoulhon, 3 + 1 formalism and bases of numerical relativity, gr-qc/0703035 [INSPIRE].
  21. [21]
    R.L. Arnowitt, S. Deser and C.W. Misner, The dynamics of general relativity, Gen. Rel. Grav. 40 (2008) 1997 [gr-qc/0405109] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  22. [22]
    I. Bengtsson, N. Barros e Sa and M. Zabzine, A note on topological brane theories, Phys. Rev. D 62 (2000) 066005 [hep-th/0005092] [INSPIRE].Google Scholar
  23. [23]
    K. Hinterbichler and R.A. Rosen, Interacting Spin-2 fields, JHEP 07 (2012) 047 [arXiv:1203.5783] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    C. Lin, SO(3) massive gravity, arXiv:1305.2069 [INSPIRE].
  25. [25]
    D. Comelli, M. Crisostomi, F. Nesti and L. Pilo, Degrees of freedom in massive gravity, Phys. Rev. D 86 (2012) 101502 [arXiv:1204.1027] [INSPIRE].ADSGoogle Scholar
  26. [26]
    D. Comelli, F. Nesti and L. Pilo, Weak massive gravity, arXiv:1302.4447 [INSPIRE].
  27. [27]
    D. Comelli, F. Nesti and L. Pilo, Massive gravity: a general analysis, arXiv:1305.0236 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Department of Theoretical Physics and Astrophysics, Faculty of ScienceMasaryk UniversityBrnoCzech Republic

Personalised recommendations