The box integrals in momentum-twistor geometry

  • Andrew Hodges


An account is given of how the ‘box integrals’, as used for one-loop calculations in massless field theory, appear in momentum-twistor geometry. Particular attention is paid to the role of compact contour integration in representing the Feynman propagator in twistor space. An explicit calculation of all the box integrals, using only elementary methods, is included.


Supersymmetric gauge theory Scattering Amplitudes 


  1. [1]
    A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP 05 (2013) 135 [arXiv:0905.1473] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    L. Mason and D. Skinner, Dual superconformal invariance, momentum twistors and grassmannians, JHEP 11 (2009) 045 [arXiv:0909.0250] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    N. Arkani-Hamed, F. Cachazo and C. Cheung, The grassmannian origin of dual superconformal invariance, JHEP 03 (2010) 036 [arXiv:0909.0483] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    L. Mason and D. Skinner, Amplitudes at weak coupling as polytopes in AdS 5, J. Phys. A 44 (2011) 135401 [arXiv:1004.3498] [INSPIRE].MathSciNetADSGoogle Scholar
  5. [5]
    A. Hodges, Crossing and twistor diagrams, in Twistor Newsletter 5, Mathematical Institute, University of Oxford, U.K. (11 July, 1977), reprinted in Further Advances in twistor theory, L.P. Hughston and R.S. Ward eds., Chapman & Hall/CRC, U.S.A. (1979).Google Scholar
  6. [6]
    R. Penrose and M.A.H. McCallum, Twistor theory: an approach to the quantisation of fields and space-time, Phys. Rep. 4 (1972) 241.Google Scholar
  7. [7]
    G. ’t Hooft and M. Veltman, Scalar one loop integrals, Nucl. Phys. B 153 (1979) 365 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    Z. Bern, V. Del Duca, L.J. Dixon and D.A. Kosower, All non-maximally-helicity-violating one-loop seven-gluon amplitudes in N = 4 super-Yang-Mills theory, Phys. Rev. D 71 (2005) 045006 [hep-th/0410224] [INSPIRE].ADSGoogle Scholar
  9. [9]
    Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys. B 412 (1994) 751 [hep-ph/9306240] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    G. Duplan\( \mathop{\mathrm{c}}\limits^{\smile } \)ić and B. Ni\( \mathop{\mathrm{z}}\limits^{\smile } \)ić, IR finite one loop box scalar integral with massless internal lines, Eur. Phys. J. C 24 (2002) 385 [hep-ph/0201306] [INSPIRE].Google Scholar
  11. [11]
    L.F. Alday, J.M. Henn, J. Plefka and T. Schuster, Scattering into the fifth dimension of N =4 super Yang-Mills, JHEP 01 (2010) 077[arXiv:0908.0684] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    L. Mason and D. Skinner, The complete planar S-matrix of N = 4 SYM as a Wilson loop in twistor space, JHEP 12 (2010) 018 [arXiv:1009.2225] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    M. Bullimore, L. Mason and D. Skinner, MHV diagrams in momentum twistor space, JHEP 12 (2010) 032 [arXiv:1009.1854] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The all-loop integrand for scattering amplitudes in planar N = 4 SYM, JHEP 01 (2011) 041 [arXiv:1008.2958] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A. Hodges and J. Trnka, A note on polytopes for scattering amplitudes, JHEP 04 (2012) 081 [arXiv:1012.6030] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    J.M. Drummond and J.M. Henn, Simple loop integrals and amplitudes in N = 4 SYM, JHEP 05 (2011) 105 [arXiv:1008.2965] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    L.F. Alday, Some analytic results for two-loop scattering amplitudes, JHEP 07 (2011) 080 [arXiv:1009.1110] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    T. Adamo, M. Bullimore, L. Mason and D. Skinner, Scattering amplitudes and Wilson loops in twistor space, J. Phys. A 44 (2011) 454008 [arXiv:1104.2890] [INSPIRE].MathSciNetADSGoogle Scholar
  20. [20]
    J.M. Henn, S. Moch and S.G. Naculich, Form factors and scattering amplitudes in N = 4 SYM in dimensional and massive regularizations, JHEP 12 (2011) 024 [arXiv:1109.5057] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    N. Arkani-Hamed et al., Scattering amplitudes and the positive grassmannian, arXiv:1212.5605 [INSPIRE].
  22. [22]
    A.E. Lipstein and L. Mason, From the holomorphic Wilson loop tod logloop-integrands for super-Yang-Mills amplitudes, JHEP 05 (2013) 106 [arXiv:1212.6228] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    A.E. Lipstein and L. Mason, From dlogs to dilogs; the super Yang-Mills MHV amplitude revisited, arXiv:1307.1443 [INSPIRE].
  24. [24]
    A. Hodges and S. A. Huggett, Twistor diagrams, Surv. High Energy Phys. 1 (1980) 333.ADSCrossRefGoogle Scholar
  25. [25]
    A. Hodges, Twistor diagrams and massless Möller scattering, Proc. R. Soc. Lond. A 385 (1983) 207.MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Mathematical InstituteUniversity of Oxford, Radcliffe Observatory QuarterOxfordU.K.

Personalised recommendations