The all-loop integrable spin-chain for strings on AdS3 × S 3 × T 4: the massive sector

  • Riccardo Borsato
  • Olof Ohlsson Sax
  • Alessandro Sfondrini
  • Bogdan StefanskiJr
  • Alessandro Torrielli
Article

Abstract

We bootstrap the all-loop dynamic S-matrix for the homogeneous \( \mathfrak{p}\mathfrak{s}\mathfrak{u} \)(1, 1|2)2 spin-chain believed to correspond to the discretization of the massive modes of string theory on AdS3 × S 3 × T 4. The S-matrix is the tensor product of two copies of the \( \mathfrak{s}\mathfrak{u} \)(1|1)2 invariant S-matrix constructed recently for the \( \mathfrak{d} \)(2, 1; α)2 chain, and depends on two anti-symmetric dressing phases. We write down the crossing equations that these phases have to satisfy. Furthermore, we present the corresponding Bethe Ansatz, which differs from the one previously conjectured, and discuss how our construction matches several recent perturbative calculations.

Keywords

Lattice Integrable Models AdS-CFT Correspondence Exact S-Matrix Bethe Ansatz 

References

  1. [1]
    J.M. Maldacena, The large- \( \mathcal{N} \) limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].
  2. [2]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  3. [3]
    S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    N. Beisert et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  6. [6]
    J.M. Maldacena and H. Ooguri, Strings in AdS 3 and SL(2, R) WZW model 1: the spectrum, J. Math. Phys. 42 (2001) 2929 [hep-th/0001053] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  7. [7]
    J.M. Maldacena, H. Ooguri and J. Son, Strings in AdS 3 and the SL(2, R) WZW model 2: Euclidean black hole, J. Math. Phys. 42 (2001) 2961 [hep-th/0005183] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  8. [8]
    J.M. Maldacena and H. Ooguri, Strings in AdS 3 and the SL(2, R) WZW model 3: correlation functions, Phys. Rev. D 65 (2002) 106006 [hep-th/0111180] [INSPIRE].MathSciNetADSGoogle Scholar
  9. [9]
    J.M. Maldacena and A. Strominger, AdS 3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    N. Seiberg and E. Witten, The D1/D5 system and singular CFT, JHEP 04 (1999) 017 [hep-th/9903224] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    F. Larsen and E.J. Martinec, U(1) charges and moduli in the D1-D5 system, JHEP 06 (1999) 019 [hep-th/9905064] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    J.P. Gauntlett, R.C. Myers and P. Townsend, Supersymmetry of rotating branes, Phys. Rev. D 59 (1999) 025001 [hep-th/9809065] [INSPIRE].MathSciNetADSGoogle Scholar
  13. [13]
    S. Elitzur, O. Feinerman, A. Giveon and D. Tsabar, String theory on AdS 3 × S 3 × S 3 × S 1, Phys. Lett. B 449 (1999) 180 [hep-th/9811245] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    J. de Boer, A. Pasquinucci and K. Skenderis, AdS/CFT dualities involving large 2D \( \mathcal{N}=4 \) superconformal symmetry, Adv. Theor. Math. Phys. 3 (1999) 577 [hep-th/9904073] [INSPIRE].MathSciNetMATHGoogle Scholar
  15. [15]
    S. Gukov, E. Martinec, G.W. Moore and A. Strominger, The search for a holographic dual to AdS 3 × S 3 × S 3 × S 1, Adv. Theor. Math. Phys. 9 (2005) 435 [hep-th/0403090] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    A. Pakman, L. Rastelli and S.S. Razamat, A spin chain for the symmetric product CFT2, JHEP 05 (2010) 099 [arXiv:0912.0959] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    A. Babichenko, B. Stefanski Jr. and K. Zarembo, Integrability and the AdS 3/CFT2 correspondence, JHEP 03 (2010) 058 [arXiv:0912.1723] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    P. Sundin and L. Wulff, Classical integrability and quantum aspects of the AdS 3 × S 3 × S 3 × S 1 superstring, JHEP 10 (2012) 109 [arXiv:1207.5531] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    A. Cagnazzo and K. Zarembo, B-field in AdS 3/CFT2 correspondence and integrability, JHEP 11 (2012) 133 [Erratum ibid. 04 (2013) 003] [arXiv:1209.4049] [INSPIRE].
  20. [20]
    O. Ohlsson Sax and B. Stefanski Jr., Integrability, spin-chains and the AdS 3/CFT2 correspondence, JHEP 08 (2011) 029 [arXiv:1106.2558] [INSPIRE].MathSciNetGoogle Scholar
  21. [21]
    O. Ohlsson Sax, B. Stefanski Jr. and A. Torrielli, On the massless modes of the AdS 3/CFT2 integrable systems, JHEP 03 (2013) 109 [arXiv:1211.1952] [INSPIRE].MathSciNetADSGoogle Scholar
  22. [22]
    J.R. David and B. Sahoo, Giant magnons in the D1-D5 system, JHEP 07 (2008) 033 [arXiv:0804.3267] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    N. Beisert, The \( \mathfrak{s}\mathfrak{u} \)(2|2) dynamic S-matrix, Adv. Theor. Math. Phys. 12 (2008) 945 [hep-th/0511082] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  24. [24]
    R. Borsato, O. Ohlsson Sax and A. Sfondrini, A dynamic \( \mathfrak{s}\mathfrak{u} \)(1|1)2 S-matrix for AdS 3/CFT2, JHEP 04 (2013) 113 [arXiv:1211.5119] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    R. Borsato, O. Ohlsson Sax and A. Sfondrini, All-loop Bethe ansatz equations for AdS 3/CFT2, JHEP 04 (2013) 116 [arXiv:1212.0505] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    N. Beisert and B.I. Zwiebel, On symmetry enhancement in the \( \mathfrak{p}\mathfrak{s}\mathfrak{u} \)(1, 1|2) sector of \( \mathcal{N}=4 \) SYM, JHEP 10 (2007) 031 [arXiv:0707.1031] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    B. Hoare and A. Tseytlin, Towards the quantum S-matrix of the Pohlmeyer reduced version of AdS 5 × S 5 superstring theory, Nucl. Phys. B 851 (2011) 161 [arXiv:1104.2423] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    B. Hoare and A. Tseytlin, On string theory on AdS 3 × S 3 × T 4 with mixed 3-form flux: tree-level S-matrix, Nucl. Phys. B 873 (2013) 682 [arXiv:1303.1037] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    N. Rughoonauth, P. Sundin and L. Wulff, Near BMN dynamics of the AdS 3 × S 3 × S 3 × S 1 superstring, JHEP 07 (2012) 159 [arXiv:1204.4742] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    P. Sundin and L. Wulff, Worldsheet scattering in AdS 3/CFT2, JHEP 07 (2013) 007 [arXiv:1302.5349] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    J.R. David and B. Sahoo, S-matrix for magnons in the D1-D5 system, JHEP 10 (2010) 112 [arXiv:1005.0501] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    C. Ahn and D. Bombardelli, Exact S-matrices for AdS 3/CFT2, arXiv:1211.4512 [INSPIRE].
  33. [33]
    G. Arutyunov, S. Frolov and M. Zamaklar, The Zamolodchikov-Faddeev algebra for AdS 5 × S 5 superstring, JHEP 04 (2007) 002 [hep-th/0612229] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    G. Arutyunov and S. Frolov, Foundations of the AdS 5 × S 5 superstring. Part I, J. Phys. A 42 (2009) 254003 [arXiv:0901.4937] [INSPIRE].MathSciNetADSGoogle Scholar
  35. [35]
    P. Vieira and D. Volin, Review of AdS/CFT integrability, chapter III.3: the Dressing factor, Lett. Math. Phys. 99 (2012) 231 [arXiv:1012.3992] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  36. [36]
    R.A. Janik, The AdS 5 × S 5 superstring worldsheet S-matrix and crossing symmetry, Phys. Rev. D 73 (2006) 086006 [hep-th/0603038] [INSPIRE].MathSciNetADSGoogle Scholar
  37. [37]
    R. Borsato, O.O. Sax, A. Sfondrini, B. Stefanski and A. Torrielli, Dressing phases of AdS 3/CFT2, arXiv:1306.2512 [INSPIRE].
  38. [38]
    G. Arutyunov, S. Frolov and M. Staudacher, Bethe ansatz for quantum strings, JHEP 10 (2004) 016 [hep-th/0406256] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    C. Gómez and R. Hernández, The magnon kinematics of the AdS/CFT correspondence, JHEP 11 (2006) 021 [hep-th/0608029] [INSPIRE].CrossRefGoogle Scholar
  40. [40]
    J. Plefka, F. Spill and A. Torrielli, On the Hopf algebra structure of the AdS/CFT S-matrix, Phys. Rev. D 74 (2006) 066008 [hep-th/0608038] [INSPIRE].MathSciNetADSGoogle Scholar
  41. [41]
    N. Beisert, An \( \mathfrak{s}\mathfrak{u} \)(1|1)-invariant S-matrix with dynamic representations, Bulg. J. Phys. 33S1 (2006) 371 [hep-th/0511013] [INSPIRE].MathSciNetGoogle Scholar
  42. [42]
    N. Beisert and M. Staudacher, Long-range PSU(2, 2|4) Bethe ansätze for gauge theory and strings, Nucl. Phys. B 727 (2005) 1 [hep-th/0504190] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    M. de Leeuw, Coordinate Bethe ansatz for the string S-matrix, J. Phys. A 40 (2007) 14413 [arXiv:0705.2369] [INSPIRE].ADSGoogle Scholar
  44. [44]
    V. Kazakov, A. Marshakov, J. Minahan and K. Zarembo, Classical/quantum integrability in AdS/CFT, JHEP 05 (2004) 024 [hep-th/0402207] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    K. Zarembo, Algebraic curves for integrable string backgrounds, arXiv:1005.1342 [INSPIRE].
  46. [46]
    M.C. Abbott, Comment on strings in AdS 3 × S 3 × S 3 × S 1 at one loop, JHEP 02 (2013) 102 [arXiv:1211.5587] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    M. Beccaria, F. Levkovich-Maslyuk, G. Macorini and A. Tseytlin, Quantum corrections to spinning superstrings in AdS 3 × S 3 × M 4 : determining the dressing phase, JHEP 04 (2013) 006 [arXiv:1211.6090] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    J.M. Maldacena and I. Swanson, Connecting giant magnons to the pp-wave: an interpolating limit of AdS 5 × S 5, Phys. Rev. D 76 (2007) 026002 [hep-th/0612079] [INSPIRE].ADSGoogle Scholar
  49. [49]
    R. Hernández and E. López, Quantum corrections to the string Bethe ansatz, JHEP 07 (2006) 004 [hep-th/0603204] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    C. Ahn and R.I. Nepomechie, Review of AdS/CFT integrability, chapter III.2: exact world-sheet S-matrix, Lett. Math. Phys. 99 (2012) 209 [arXiv:1012.3991] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  51. [51]
    P. Dorey, Exact S matrices, hep-th/9810026 [INSPIRE].
  52. [52]
    A. Torrielli, Review of AdS/CFT integrability, chapter VI.2: Yangian algebra, Lett. Math. Phys. 99 (2012) 547 [arXiv:1012.4005] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  53. [53]
    A. Torrielli, Yangians, S-matrices and AdS/CFT, J. Phys. A 44 (2011) 263001 [arXiv:1104.2474] [INSPIRE].ADSGoogle Scholar
  54. [54]
    A. Torrielli, Classical r-matrix of the \( \mathfrak{s}\mathfrak{u} \)(2|2) SYM spin-chain, Phys. Rev. D 75 (2007) 105020 [hep-th/0701281] [INSPIRE].MathSciNetADSGoogle Scholar
  55. [55]
    V. Drinfeld, Quasi Hopf algebras, Alg. Anal. 1N6 (1989) 114 [INSPIRE].MathSciNetGoogle Scholar
  56. [56]
    S. Khoroshkin and V. Tolstoi, Yangian double and rational R matrix, Lett. Math. Phys. 36 (1994) 373 [hep-th/9406194] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    J.-F. Cai, K. Wu, C. Xiong and S.-K. Wang, Universal R-matrix of the super Yangian double DY (\( \mathfrak{g}\mathfrak{l} \)(1|1)), Commun. Theor. Phys. 29 (1998) 173 [INSPIRE].MathSciNetGoogle Scholar
  58. [58]
    G. Arutyunov, M. de Leeuw and A. Torrielli, Universal blocks of the AdS/CFT scattering matrix, JHEP 05 (2009) 086 [arXiv:0903.1833] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    V. Drinfeld, A new realization of Yangians and quantized affine algebras, Sov. Math. Dokl. 36 (1988) 212 [INSPIRE].MathSciNetGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Riccardo Borsato
    • 1
  • Olof Ohlsson Sax
    • 1
  • Alessandro Sfondrini
    • 1
  • Bogdan StefanskiJr
    • 2
  • Alessandro Torrielli
    • 3
  1. 1.Institute for Theoretical Physics and Spinoza InstituteUtrecht UniversityUtrechtThe Netherlands
  2. 2.Centre for Mathematical ScienceCity University LondonLondonU.K.
  3. 3.Department of MathematicsUniversity of Surrey,GuildfordU.K.

Personalised recommendations