Advertisement

Recent result of the AMS-02 experiment and decaying gravitino dark matter in gauge mediation

  • Masahiro Ibe
  • Sho Iwamoto
  • Shigeki Matsumoto
  • Takeo Moroi
  • Norimi Yokozaki
Article

Abstract

The AMS-02 collaboration has recently reported an excess of cosmic-ray positron fractions, which is consistent with previous results at the PAMELA experiment. The result indicates the existence of new physics phenomena to provide the origin of the energetic cosmic-ray positron. We pursue the possibility that the enhancement of the positron fraction is due to decays of gravitino dark matter. We discuss that such a scenario viably fits into the models in which the soft SUSY breaking parameters emerge dominantly from gauge-mediation mechanism with superparticle masses of around 10 TeV. Our scenario is compatible with the 126 GeV Higgs boson, negative results from searches for SUSY particles, and non-observation of anomalous flavor-changing processes. We also point out that the scenario will be tested in near future by measuring the electric dipole moment of the electron and the lepton flavor violating decay of the muon.

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    AMS collaboration, M. Aguilar et al., First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5350 GeV, Phys. Rev. Lett. 110 (2013), no. 14 141102 [INSPIRE].
  2. [2]
    PAMELA collaboration, O. Adriani et al., An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV, Nature 458 (2009) 607 [arXiv:0810.4995] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A. Ibarra and D. Tran, Gamma Ray Spectrum from Gravitino Dark Matter Decay, Phys. Rev. Lett. 100 (2008) 061301 [arXiv:0709.4593] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    K. Ishiwata, S. Matsumoto and T. Moroi, High Energy Cosmic Rays from the Decay of Gravitino Dark Matter, Phys. Rev. D 78 (2008) 063505 [arXiv:0805.1133] [INSPIRE].ADSGoogle Scholar
  5. [5]
    K. Ishiwata, S. Matsumoto and T. Moroi, Cosmic-Ray Positron from Superparticle Dark Matter and the PAMELA Anomaly, Phys. Lett. B 675 (2009) 446 [arXiv:0811.0250] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    K. Ishiwata, S. Matsumoto and T. Moroi, High energy cosmic rays from decaying supersymmetric dark matter, JHEP 05 (2009) 110 [arXiv:0903.0242] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    W. Buchmüller, L. Covi, K. Hamaguchi, A. Ibarra and T. Yanagida, Gravitino dark matter in R-parity breaking vacua, JHEP 03 (2007) 037 [hep-ph/0702184] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M. Kawasaki, K. Kohri and T. Moroi, Big-Bang nucleosynthesis and hadronic decay of long-lived massive particles, Phys. Rev. D 71 (2005) 083502.ADSGoogle Scholar
  9. [9]
    K. Jedamzik, Big bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles, Phys. Rev. D 74 (2006) 103509 [hep-ph/0604251] [INSPIRE].ADSGoogle Scholar
  10. [10]
    M. Kawasaki, K. Kohri, T. Moroi and A. Yotsuyanagi, Big-Bang Nucleosynthesis and Gravitino, Phys. Rev. D 78 (2008) 065011 [arXiv:0804.3745] [INSPIRE].ADSGoogle Scholar
  11. [11]
    M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    W. Buchmüller, R. Peccei and T. Yanagida, Leptogenesis as the origin of matter, Ann. Rev. Nucl. Part. Sci. 55 (2005) 311 [hep-ph/0502169] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  15. [15]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  16. [16]
    E.A. Baltz and J. Edsjo, Positron propagation and fluxes from neutralino annihilation in the halo, Phys. Rev. D 59 (1998) 023511 [astro-ph/9808243] [INSPIRE].ADSGoogle Scholar
  17. [17]
    T. Delahaye, R. Lineros, F. Donato, N. Fornengo and P. Salati, Positrons from dark matter annihilation in the galactic halo: theoretical uncertainties, Phys. Rev. D 77 (2008) 063527 [arXiv:0712.2312] [INSPIRE].ADSGoogle Scholar
  18. [18]
    J.F. Navarro, C.S. Frenk and S.D. White, The Structure of cold dark matter halos, Astrophys. J. 462 (1996) 563 [astro-ph/9508025] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    J.F. Navarro, C.S. Frenk and S.D. White, A Universal density profile from hierarchical clustering, Astrophys. J. 490 (1997) 493 [astro-ph/9611107] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Ibe, S. Matsumoto, S. Shirai and T.T. Yanagida, AMS-02 Positrons from Decaying Wino in the Pure Gravity Mediation Model, JHEP 07 (2013) 063 [arXiv:1305.0084] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Strong and I. Moskalenko, Propagation of cosmic-ray nucleons in the galaxy, Astrophys. J. 509 (1998) 212 [astro-ph/9807150] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    L. Maccione, Low energy cosmic ray positron fraction explained by charge-sign dependent solar modulation, Phys. Rev. Lett. 110 (2013) 081101 [arXiv:1211.6905] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    L. Gleeson and W. Axford, Solar Modulation of Galactic Cosmic Rays, Astrophys. J. 154 (1968) 1011 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    PAMELA collaboration, O. Adriani et al., The cosmic-ray electron flux measured by the PAMELA experiment between 1 and 625 GeV, Phys. Rev. Lett. 106 (2011) 201101 [arXiv:1103.2880] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    Fermi LAT collaboration, M. Ackermann et al., Fermi LAT observations of cosmic-ray electrons from 7 GeV to 1 TeV, Phys. Rev. D 82 (2010) 092004 [arXiv:1008.3999] [INSPIRE].ADSGoogle Scholar
  27. [27]
    Q. Yuan et al., Implications of the AMS-02 positron fraction in cosmic rays, arXiv:1304.1482 [INSPIRE].
  28. [28]
    S. Matsumoto, K. Ishiwata and T. Moroi, Cosmic Gamma-ray from Inverse Compton Process in Unstable Dark Matter Scenario, Phys. Lett. B 679 (2009) 1 [arXiv:0905.4593] [INSPIRE].ADSGoogle Scholar
  29. [29]
    M. Garny, A. Ibarra and D. Tran, Constraints on hadronically decaying dark matter, JCAP 08 (2012) 025 [arXiv:1205.6783] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    T. Delahaye and M. Grefe, Antiproton Limits on Decaying Gravitino Dark Matter, arXiv:1305.7183 [INSPIRE].
  31. [31]
    C. Evoli, I. Cholis, D. Grasso, L. Maccione and P. Ullio, Antiprotons from dark matter annihilation in the Galaxy: astrophysical uncertainties, Phys. Rev. D 85 (2012) 123511 [arXiv:1108.0664] [INSPIRE].ADSGoogle Scholar
  32. [32]
    M. Cirelli, E. Moulin, P. Panci, P.D. Serpico and A. Viana, Gamma ray constraints on Decaying Dark Matter, Phys. Rev. D 86 (2012) 083506 [arXiv:1205.5283] [INSPIRE].ADSGoogle Scholar
  33. [33]
    I. Masina, P. Panci and F. Sannino, Gamma ray constraints on flavor violating asymmetric dark matter, JCAP 12 (2012) 002 [arXiv:1205.5918] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    S. Shirai, F. Takahashi and T. Yanagida, R-violating Decay of Wino Dark Matter and electron/positron Excesses in the PAMELA/Fermi Experiments, Phys. Lett. B 680 (2009) 485 [arXiv:0905.0388] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    G.F. Giudice and A. Strumia, Probing High-Scale and Split Supersymmetry with Higgs Mass Measurements, Nucl. Phys. B 858 (2012) 63 [arXiv:1108.6077] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, A complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model, Nucl. Phys. B 477 (1996) 321 [hep-ph/9604387] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    T. Moroi and M. Nagai, Probing Supersymmetric Model with Heavy Sfermions Using Leptonic Flavor and CP-violations, Phys. Lett. B 723 (2013) 107 [arXiv:1303.0668] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    D. McKeen, M. Pospelov and A. Ritz, EDM Signatures of PeV-scale Superpartners, arXiv:1303.1172 [INSPIRE].
  39. [39]
    A. Baldini et al., MEG Upgrade Proposal, arXiv:1301.7225 [INSPIRE].
  40. [40]
    J. Brod and M. Gorbahn, Next-to-Next-to-Leading-Order Charm-Quark Contribution to the CP-violation Parameter ϵ K and ΔM K, Phys. Rev. Lett. 108 (2012) 121801 [arXiv:1108.2036] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  42. [42]
    A.C. Vutha et al., Search for the electric dipole moment of the electron with thorium monoxide, J. Phys. B 43 (2010) 074007 [arXiv:0908.2412] [INSPIRE].ADSGoogle Scholar
  43. [43]
    A. Masiero and J. Valle, A model for spontaneous r parity breaking, Phys. Lett. B 251 (1990) 273 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    K. Kumekawa, T. Moroi and T. Yanagida, Flat potential for inflaton with a discrete R invariance in supergravity, Prog. Theor. Phys. 92 (1994) 437 [hep-ph/9405337] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    K. Hamaguchi, H. Murayama and T. Yanagida, Leptogenesis from N dominated early universe, Phys. Rev. D 65 (2002) 043512 [hep-ph/0109030] [INSPIRE].ADSGoogle Scholar
  46. [46]
    WMAP collaboration, G. Hinshaw et al., Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, arXiv:1212.5226 [INSPIRE].
  47. [47]
    Planck collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [INSPIRE].
  48. [48]
    T. Moroi, H. Murayama and M. Yamaguchi, Cosmological constraints on the light stable gravitino, Phys. Lett. B 303 (1993) 289 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    M. Bolz, A. Brandenburg and W. Buchmüller, Thermal production of gravitinos, Nucl. Phys. B 606 (2001) 518 [Erratum ibid. B 790 (2008) 336-337] [hep-ph/0012052] [INSPIRE].
  50. [50]
    J. Pradler and F.D. Steffen, Constraints on the Reheating Temperature in Gravitino Dark Matter Scenarios, Phys. Lett. B 648 (2007) 224 [hep-ph/0612291] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    G. Veneziano and S. Yankielowicz, An Effective Lagrangian for the Pure N = 1 Supersymmetric Yang-Mills Theory, Phys. Lett. B 113 (1982) 231 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    T. Taylor, G. Veneziano and S. Yankielowicz, Supersymmetric QCD and Its Massless Limit: An Effective Lagrangian Analysis, Nucl. Phys. B 218 (1983) 493 [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    T. Yanagida, in Proceedings of the Workshop on Unified Theory and Baryon Number of the Universe, O. Sawada and A. Sugamoto eds., KEK, Tsukuba Japan (1979).Google Scholar
  54. [54]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].Google Scholar
  55. [55]
    S.L. Glashow, in NATO Advanced Study Institute, Series B. Vol. 61: Quarks and Leptons, M. Lévy et al. eds., Plenum Press, New York U.S.A. (1979).Google Scholar
  56. [56]
    R.N. Mohapatra and G. Senjanovic, Neutrino Mass and Spontaneous Parity Nonconservation, Phys. Rev. Lett. 44 (1980) 912.ADSCrossRefGoogle Scholar
  57. [57]
    P. Minkowski, μeγ at a Rate of One Out of 1-Billion Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Masahiro Ibe
    • 1
    • 2
  • Sho Iwamoto
    • 2
  • Shigeki Matsumoto
    • 2
  • Takeo Moroi
    • 2
    • 3
  • Norimi Yokozaki
    • 2
  1. 1.ICRRUniversity of TokyoKashiwaJapan
  2. 2.Kavli IPMU (WPI)University of TokyoKashiwaJapan
  3. 3.Department of PhysicsUniversity of TokyoTokyoJapan

Personalised recommendations