Advertisement

Lifshitz as a deformation of Anti-de Sitter

  • Yegor Korovin
  • Kostas Skenderis
  • Marika Taylor
Article

Abstract

We consider holography for Lifshitz spacetimes with dynamical exponent z = 1+ϵ2, where ϵ is small. We show that the holographically dual field theory is a specific deformation of the relativistic CFT, corresponding to the z = 1 theory. Treating ϵ as a small expansion parameter we set up the holographic dictionary for Einstein-Proca models up to order ϵ2 in three and four bulk dimensions. We explain how renormalization turns the relativistic conformal invariance into non-relativistic Lifshitz invariance with dynamical exponent z = 1 + ϵ2. We compute the two-point function of the conserved spin two current for the dual two-dimensional field theory and verify that it is Lifshitz invariant. Using only QFT arguments, we show that a particular class of deformations of CFTs generically leads to Lifshitz scaling invariance and we construct examples of such deformations.

Keywords

Gauge-gravity correspondence AdS-CFT Correspondence Black Holes in String Theory Holography and condensed matter physics (AdS/CMT) 

References

  1. [1]
    S. Sachdev, Condensed Matter and AdS/CFT, Lect. Notes Phys. 828 (2011) 273 [arXiv:1002.2947] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [INSPIRE].Google Scholar
  3. [3]
    G.T. Horowitz, Theory of Superconductivity, Lect. Notes Phys. 828 (2011) 313 [arXiv:1002.1722] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    C.P. Herzog, Lectures on Holographic Superfluidity and Superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [INSPIRE].Google Scholar
  5. [5]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    D. Son, Toward an AdS/cold atoms correspondence: a Geometric realization of the Schrödinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [INSPIRE].MathSciNetADSGoogle Scholar
  8. [8]
    S. Kachru, X. Liu and M. Mulligan, Gravity Duals of Lifshitz-like Fixed Points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [INSPIRE].MathSciNetADSGoogle Scholar
  9. [9]
    M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE].
  10. [10]
    M. Guica, K. Skenderis, M. Taylor and B.C. van Rees, Holography for Schrödinger backgrounds, JHEP 02 (2011) 056 [arXiv:1008.1991] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    R. Caldeira Costa and M. Taylor, Holography for chiral scale-invariant models, JHEP 02 (2011) 082 [arXiv:1010.4800] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    P. Kraus and E. Perlmutter, Universality and exactness of Schrödinger geometries in string and M-theory, JHEP 05 (2011) 045 [arXiv:1102.1727] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    M. Guica, A Fefferman-Graham-Like Expansion for Null Warped AdS 3, arXiv:1111.6978 [INSPIRE].
  14. [14]
    B.C. van Rees, Correlation functions for Schrödinger backgrounds, arXiv:1206.6507 [INSPIRE].
  15. [15]
    D.M. Hofman and A. Strominger, Chiral Scale and Conformal Invariance in 2D Quantum Field Theory, Phys. Rev. Lett. 107 (2011) 161601 [arXiv:1107.2917] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    K. Balasubramanian and K. Narayan, Lifshitz spacetimes from AdS null and cosmological solutions, JHEP 08 (2010) 014 [arXiv:1005.3291] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    K. Narayan, Lifshitz-like systems and AdS null deformations, Phys. Rev. D 84 (2011) 086001 [arXiv:1103.1279] [INSPIRE].ADSGoogle Scholar
  18. [18]
    I. Kanitscheider and K. Skenderis, Universal hydrodynamics of non-conformal branes, JHEP 04 (2009) 062 [arXiv:0901.1487] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    B. Gouteraux, J. Smolic, M. Smolic, K. Skenderis and M. Taylor, Holography for Einstein-Maxwell-dilaton theories from generalized dimensional reduction, JHEP 01 (2012) 089 [arXiv:1110.2320] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    W. Chemissany and J. Hartong, From D3-branes to Lifshitz Space-Times, Class. Quant. Grav. 28 (2011) 195011 [arXiv:1105.0612] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    W. Chemissany, D. Geissbuhler, J. Hartong and B. Rollier, Holographic Renormalization for z=2 Lifshitz Space-Times from AdS, Class. Quant. Grav. 29 (2012) 235017 [arXiv:1205.5777] [INSPIRE]. MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    I. Papadimitriou, Holographic Renormalization of general dilaton-axion gravity, JHEP 08 (2011) 119 [arXiv:1106.4826] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. Donos and J.P. Gauntlett, Lifshitz Solutions of D = 10 and D = 11 supergravity, JHEP 12 (2010) 002 [arXiv:1008.2062] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    N. Halmagyi, M. Petrini and A. Zaffaroni, Non-Relativistic Solutions of N = 2 Gauged Supergravity, JHEP 08 (2011) 041 [arXiv:1102.5740] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    D. Cassani and A.F. Faedo, Constructing Lifshitz solutions from AdS, JHEP 05 (2011) 013 [arXiv:1102.5344] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    M. Petrini and A. Zaffaroni, A Note on Supersymmetric Type II Solutions of Lifshitz Type, JHEP 07 (2012) 051 [arXiv:1202.5542] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    D. Boyanovsky and J.L. Cardy, Critical behavior of m-component magnets with correlated impurities, Phys. Rev. B 26 (1982) 154 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    A.W.W. Ludwig, M.P.A. Fisher, R. Shankar and G. Grinstein, Integer quantum hall transition: An alternative approach and exact results, Phys. Rev. B 50 (1994) 7526.ADSCrossRefGoogle Scholar
  29. [29]
    J. Ye and S. Sachdev, Coulomb Interactions at Quantum Hall Critical Points of Systems in a Periodic Potential, Physical Review Letters 80 (1998) 5409 [cond-mat/9712161].
  30. [30]
    I.F. Herbut, Interactions and phase transitions on graphenes honeycomb lattice, Phys. Rev. Lett. 97 (2006) 146401 [cond-mat/0606195] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    D.T. Son, Quantum critical point in graphene approached in the limit of infinitely strong Coulomb interaction, Phys. Rev. B 75 (2007) 235423 [cond-mat/0701501] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    K.-S. Kim, Role of nonmagnetic disorder on the stability of the u(1) spin liquid: A renormalization group study, Phys. Rev. B 70 (2004) 140405.ADSCrossRefGoogle Scholar
  33. [33]
    I.F. Herbut, Zero-temperature d -wave superconducting phase transition, Phys. Rev. Lett. 85 (2000) 1532.ADSCrossRefGoogle Scholar
  34. [34]
    I.F. Herbut, Critical exponents at the superconductor-insulator transition in dirty-boson systems, Phys. Rev. B 61 (2000) 14723.ADSCrossRefGoogle Scholar
  35. [35]
    T. Schneider, Nature of the quantum insulator to superconductor and superconductor to normal state transitions in cuprate superconductors [cond-mat/0104053].
  36. [36]
    P. Hořava, Quantum Gravity at a Lifshitz Point, Phys. Rev. D 79 (2009) 084008 [arXiv:0901.3775] [INSPIRE].ADSGoogle Scholar
  37. [37]
    D. Matthey, N. Reyren, J.-M. Triscone and T. Schneider, Electric-field-effect modulation of the transition temperature, mobile carrier density, and in-plane penetration depth of ndba2cu3o7−δ thin films, Phys. Rev. Lett. 98 (2007) 057002.ADSCrossRefGoogle Scholar
  38. [38]
    Y. Zuev, M. Seog Kim and T.R. Lemberger, Correlation between superfluid density and T C of underdoped yba2cu3o6+x near the superconductor-insulator transition, Phys. Rev. Lett. 95 (2005) 137002.ADSCrossRefGoogle Scholar
  39. [39]
    D.M. Broun et al., Superfluid density in a highly underdoped yba2cu3o6+y superconductor, Phys. Rev. Lett. 99 (2007) 237003.ADSCrossRefGoogle Scholar
  40. [40]
    T.R. Lemberger, I. Hetel, A. Tsukada, M. Naito and M. Randeria, Superconductor-to-metal quantum phase transition in overdoped La 2−x Sr x CuO 4, Phys. Rev. B 83 (2011) 140507.ADSCrossRefGoogle Scholar
  41. [41]
    R. Gregory, S.L. Parameswaran, G. Tasinato and I. Zavala, Lifshitz solutions in supergravity and string theory, JHEP 12 (2010) 047 [arXiv:1009.3445] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    H. Braviner, R. Gregory and S.F. Ross, Flows involving Lifshitz solutions, Class. Quant. Grav. 28 (2011) 225028 [arXiv:1108.3067] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    L. Barclay, R. Gregory, S. Parameswaran, G. Tasinato and I. Zavala, Lifshitz black holes in IIA supergravity, JHEP 05 (2012) 122 [arXiv:1203.0576] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    J. Maldacena, D. Martelli and Y. Tachikawa, Comments on string theory backgrounds with non-relativistic conformal symmetry, JHEP 10 (2008) 072 [arXiv:0807.1100] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    S. Deger, A. Kaya, E. Sezgin and P. Sundell, Spectrum of D = 6, N = 4b supergravity on AdS in three-dimensions xS 3, Nucl. Phys. B 536 (1998) 110 [hep-th/9804166] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    B. Biran, A. Casher, F. Englert, M. Rooman and P. Spindel, The fluctuating seven sphere in eleven-dimensional supergravity, Phys. Lett. B 134 (1984) 179 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    H. Kim, L. Romans and P. van Nieuwenhuizen, The Mass Spectrum of Chiral N = 2 D = 10 Supergravity on S 5, Phys. Rev. D 32 (1985) 389 [INSPIRE].ADSGoogle Scholar
  48. [48]
    S.F. Ross and O. Saremi, Holographic stress tensor for non-relativistic theories, JHEP 09 (2009) 009 [arXiv:0907.1846] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    S.F. Ross, Holography for asymptotically locally Lifshitz spacetimes, Class. Quant. Grav. 28 (2011) 215019 [arXiv:1107.4451] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    M. Baggio, J. de Boer and K. Holsheimer, Hamilton-Jacobi Renormalization for Lifshitz Spacetime, JHEP 01 (2012) 058 [arXiv:1107.5562] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    T. Griffin, P. Hořava and C.M. Melby-Thompson, Conformal Lifshitz Gravity from Holography, JHEP 05 (2012) 010 [arXiv:1112.5660] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    R.B. Mann and R. McNees, Holographic Renormalization for Asymptotically Lifshitz Spacetimes, JHEP 10 (2011) 129 [arXiv:1107.5792] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    M. Baggio, J. de Boer and K. Holsheimer, Anomalous Breaking of Anisotropic Scaling Symmetry in the Quantum Lifshitz Model, JHEP 07 (2012) 099 [arXiv:1112.6416] [INSPIRE]. ADSCrossRefGoogle Scholar
  54. [54]
    I. Papadimitriou and K. Skenderis, AdS/CFT correspondence and geometry, hep-th/0404176 [INSPIRE].
  55. [55]
    I. Papadimitriou and K. Skenderis, Correlation functions in holographic RG flows, JHEP 10 (2004) 075 [hep-th/0407071] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  57. [57]
    K. Skenderis and S.N. Solodukhin, Quantum effective action from the AdS /CFT correspondence, Phys. Lett. B 472 (2000) 316 [hep-th/9910023] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    M. Henningson and K. Skenderis, The Holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  59. [59]
    M. Henningson and K. Skenderis, Holography and the Weyl anomaly, Fortsch. Phys. 48 (2000)125 [hep-th/9812032] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  60. [60]
    J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207.MathSciNetADSCrossRefzbMATHGoogle Scholar
  61. [61]
    B.C. van Rees, Holographic renormalization for irrelevant operators and multi-trace counterterms, JHEP 08 (2011) 093 [arXiv:1102.2239] [INSPIRE].CrossRefGoogle Scholar
  62. [62]
    B.C. van Rees, Irrelevant deformations and the holographic Callan-Symanzik equation, JHEP 10 (2011) 067 [arXiv:1105.5396] [INSPIRE].CrossRefGoogle Scholar
  63. [63]
    M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys. B 631 (2002) 159 [hep-th/0112119] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  64. [64]
    S. Deser and R.I. Nepomechie, Gauge invariance versus masslessness in de Sitter space, Annals Phys. 154 (1984) 396 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  65. [65]
    Y. Korovin, K. Skenderis and M. Taylor, Lifshitz from AdS at finite temperature and top down models, arXiv:1306.3344 [INSPIRE].
  66. [66]
    J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string, Cambridge University Press, Cambridge, U.K. (1998).Google Scholar
  67. [67]
    P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Springer (1997).Google Scholar
  68. [68]
    H. Osborn, Weyl consistency conditions and a local renormalization group equation for general renormalizable field theories, Nucl. Phys. B 363 (1991) 486 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  69. [69]
    H. Osborn and A. Petkou, Implications of conformal invariance in field theories for general dimensions, Annals Phys. 231 (1994) 311 [hep-th/9307010] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  70. [70]
    M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning Conformal Correlators, JHEP 11 (2011) 071 [arXiv:1107.3554] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  71. [71]
    J.L. Cardy, Anisotropic corrections to correlation functions in finite size systems, Nucl. Phys. B 290 (1987) 355 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  72. [72]
    J. Jeong, O. Kelekci and E.O Colgain, An alternative IIB embedding of F(4) gauged supergravity, JHEP 05 (2013) 079 [arXiv:1302.2105] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  73. [73]
    S. Janiszewski and A. Karch, Non-relativistic holography from Hořava gravity, JHEP 02 (2013) 123 [arXiv:1211.0005] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  74. [74]
    T. Griffin, P. Hořava and C.M. Melby-Thompson, Lifshitz Gravity for Lifshitz Holography, Phys. Rev. Lett. 110 (2013) 081602 [arXiv:1211.4872] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    W. Mueck and K. Viswanathan, Conformal field theory correlators from classical field theory on anti-de Sitter space. 2. Vector and spinor fields, Phys. Rev. D 58 (1998) 106006 [hep-th/9805145] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Yegor Korovin
    • 1
  • Kostas Skenderis
    • 1
    • 2
    • 3
  • Marika Taylor
    • 2
    • 3
  1. 1.KdV Institute for MathematicsAmsterdamThe Netherlands
  2. 2.Institute for Theoretical PhysicsAmsterdamThe Netherlands
  3. 3.School of Mathematical Sciences and STAG Research CentreUniversity of SouthamptonSouthamptonUK

Personalised recommendations