Advertisement

Low-mass Higgs bosons in the NMSSM and their LHC implications

  • Neil Christensen
  • Tao Han
  • Zhen Liu
  • Shufang Su
Article

Abstract

We study the Higgs sector of the Next to Minimal Supersymmetric Standard Model (NMSSM) in light of the discovery of the SM-like Higgs boson at the LHC. We perform a broad scan over the NMSSM parameter space and identify the regions that are consistent with current Higgs search results at colliders. In contrast to the commonly studied “decoupling” scenario in the literature where the Minimal Supersymmetric Standard Model CP-odd Higgs boson mass is large m Am Z , we pay particular attention to the light Higgs states in the case when m A ≲ 2m Z . The Higgs bosons in the NMSSM, namely three CP-even states, two CP-odd states, and two charged Higgs states, could all be rather light, near or below the electroweak scale, although the singlet-like states can be heavier. The SM-like Higgs boson could be either the lightest CP-even scalar or the second lightest CP-even scalar, but is unlikely to be the heaviest scalar. These NMSSM parameter regions have unique properties and offer rich phenomenology. The decay branching fractions for the SM-like Higgs boson may be modified appreciably. The correlations of γγ/V V and \( {VV \left/ {{b\overline{b}}} \right.} \) can be substantially altered. The new Higgs bosons may be readily produced at the LHC and may decay to non-standard distinctive final states, most notably a pair of Higgs bosons when kinematically accessible. We evaluate the production and decay of the Higgs bosons and comment on further searches at the LHC to probe the Higgs sector of the NMSSM.

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    J.R. Ellis, J. Gunion, H.E. Haber, L. Roszkowski and F. Zwirner, Higgs bosons in a nonminimal supersymmetric model, Phys. Rev. D 39 (1989) 844 [INSPIRE].ADSGoogle Scholar
  2. [2]
    M. Drees, Supersymmetric models with extended Higgs sector, Int. J. Mod. Phys. A 4 (1989) 3635 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    H.P. Nilles, M. Srednicki and D. Wyler, Weak interaction breakdown induced by supergravity, Phys. Lett. B 120 (1983) 346 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    J.E. Kim and H.P. Nilles, The μ problem and the strong CP problem, Phys. Lett. B 138 (1984) 150 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    J. Frere, D. Jones and S. Raby, Fermion masses and induction of the weak scale by supergravity, Nucl. Phys. B 222 (1983) 11 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    G. Giudice and A. Masiero, A natural solution to the μ problem in supergravity theories, Phys. Lett. B 206 (1988) 480 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  8. [8]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  9. [9]
    L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY Higgs near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    H. Baer, V. Barger, P. Huang and X. Tata, Natural supersymmetry: LHC, dark matter and ILC searches, JHEP 05 (2012) 109 [arXiv:1203.5539] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M.W. Cahill-Rowley, J.L. Hewett, A. Ismail and T.G. Rizzo, The Higgs sector and fine-tuning in the pMSSM, Phys. Rev. D 86 (2012) 075015 [arXiv:1206.5800] [INSPIRE].ADSGoogle Scholar
  13. [13]
    S. King, M. Mühlleitner, R. Nevzorov and K. Walz, Natural NMSSM Higgs bosons, Nucl. Phys. B 870 (2013) 323 [arXiv:1211.5074] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    K. Agashe, Y. Cui and R. Franceschini, Natural islands for a 125 GeV Higgs in the scale-invariant NMSSM, JHEP 02 (2013) 031 [arXiv:1209.2115] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    H.E. Haber, Nonminimal Higgs sectors: the decoupling limit and its phenomenological implications, hep-ph/9501320 [INSPIRE].
  16. [16]
    ATLAS collaboration, Search for neutral MSSM Higgs bosons decaying to τ +τ pairs in proton-proton collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Lett. B 705 (2011) 174 [arXiv:1107.5003] [INSPIRE].ADSGoogle Scholar
  17. [17]
    ATLAS collaboration, Search for neutral MSSM Higgs bosons in sqrts = 7 TeV pp collisions at ATLAS, ATLAS-CONF-2012-094, CERN, Geneva Switzerland (2012).
  18. [18]
    CMS collaboration, Search for a Higgs boson decaying into a b-quark pair and produced in association with b quarks in proton-proton collisions at 7 TeV, Phys. Lett. B 722 (2013) 207 [arXiv:1302.2892] [INSPIRE].ADSGoogle Scholar
  19. [19]
    N.D. Christensen, T. Han and S. Su, MSSM Higgs bosons at the LHC, Phys. Rev. D 85 (2012) 115018 [arXiv:1203.3207] [INSPIRE].ADSGoogle Scholar
  20. [20]
    U. Ellwanger, A Higgs boson near 125 GeV with enhanced di-photon signal in the NMSSM, JHEP 03 (2012) 044 [arXiv:1112.3548] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S. King, M. Muhlleitner and R. Nevzorov, NMSSM Higgs benchmarks near 125 GeV, Nucl. Phys. B 860 (2012) 207 [arXiv:1201.2671] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP 03 (2012) 086 [arXiv:1202.5821] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J.F. Gunion, Y. Jiang and S. Kraml, The constrained NMSSM and Higgs near 125 GeV, Phys. Lett. B 710 (2012) 454 [arXiv:1201.0982] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    U. Ellwanger and C. Hugonie, Higgs bosons near 125 GeV in the NMSSM with constraints at the GUT scale, Adv. High Energy Phys. 2012 (2012) 625389 [arXiv:1203.5048] [INSPIRE].Google Scholar
  25. [25]
    K. Choi, S.H. Im, K.S. Jeong and M. Yamaguchi, Higgs mixing and diphoton rate enhancement in NMSSM models, JHEP 02 (2013) 090 [arXiv:1211.0875] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    K.S. Jeong, Y. Shoji and M. Yamaguchi, Singlet-doublet Higgs mixing and its implications on the Higgs mass in the PQ-NMSSM, JHEP 09 (2012) 007 [arXiv:1205.2486] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    T. Graf, R. Grober, M. Muhlleitner, H. Rzehak and K. Walz, Higgs boson masses in the complex NMSSM at one-loop level, JHEP 10 (2012) 122 [arXiv:1206.6806] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    Z. Kang, J. Li and T. Li, On naturalness of the MSSM and NMSSM, JHEP 11 (2012) 024 [arXiv:1201.5305] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    T. Gherghetta, B. von Harling, A.D. Medina and M.A. Schmidt, The scale-invariant NMSSM and the 126 GeV Higgs boson, JHEP 02 (2013) 032 [arXiv:1212.5243] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    K. Kowalska et al., The constrained NMSSM with a 125 GeV Higgs bosona global analysis, Phys. Rev. D 87 (2013) 115010 [arXiv:1211.1693] [INSPIRE].ADSGoogle Scholar
  31. [31]
    D.A. Vasquez et al., The 125 GeV Higgs in the NMSSM in light of LHC results and astrophysics constraints, Phys. Rev. D 86 (2012) 035023 [arXiv:1203.3446] [INSPIRE].ADSGoogle Scholar
  32. [32]
    D.E. Lopez-Fogliani, Light Higgs and neutralino dark matter in the NMSSM, J. Phys. Conf. Ser. 384 (2012) 012014 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    G. Bélanger et al., Higgs bosons at 98 and 125 GeV at LEP and the LHC, JHEP 01 (2013) 069 [arXiv:1210.1976] [INSPIRE].CrossRefGoogle Scholar
  34. [34]
    G. Bélanger, U. Ellwanger, J. Gunion, Y. Jiang and S. Kraml, Two Higgs bosons at the Tevatron and the LHC?, arXiv:1208.4952 [INSPIRE].
  35. [35]
    J.F. Gunion, Y. Jiang and S. Kraml, Could two NMSSM Higgs bosons be present near 125 GeV?, Phys. Rev. D 86 (2012) 071702 [arXiv:1207.1545] [INSPIRE].ADSGoogle Scholar
  36. [36]
    Miller, D.J., R. Nevzorov and P. Zerwas, The Higgs sector of the next-to-minimal supersymmetric Standard Model, Nucl. Phys. B 681 (2004) 3 [hep-ph/0304049] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    V. Barger, P. Langacker, H.-S. Lee and G. Shaughnessy, Higgs sector in extensions of the MSSM, Phys. Rev. D 73 (2006) 115010 [hep-ph/0603247] [INSPIRE].ADSGoogle Scholar
  38. [38]
    LEP Higgs Working Group for Higgs boson searches, ALEPH, DELPHI, L3 and OPAL collaborations, Search for charged Higgs bosons: preliminary combined results using LEP data collected at energies up to 209 GeV, hep-ex/0107031 [INSPIRE].
  39. [39]
    ALEPH collaboration, A. Heister et al., Search for charged Higgs bosons in e + e collisions at energies up to \( \sqrt{s}=209 \) GeV, Phys. Lett. B 543 (2002) 1 [hep-ex/0207054] [INSPIRE].Google Scholar
  40. [40]
    S. Heinemeyer, O. Stal and G. Weiglein, Interpreting the LHC Higgs search results in the MSSM, Phys. Lett. B 710 (2012) 201 [arXiv:1112.3026] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A. Arbey, M. Battaglia, A. Djouadi and F. Mahmoudi, The Higgs sector of the phenomenological MSSM in the light of the Higgs boson discovery, JHEP 09 (2012) 107 [arXiv:1207.1348] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    R. Benbrik et al., Confronting the MSSM and the NMSSM with the discovery of a signal in the two photon channel at the LHC, Eur. Phys. J. C 72 (2012) 2171 [arXiv:1207.1096] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    K. Hagiwara, J.S. Lee and J. Nakamura, Properties of 125 GeV Higgs boson in non-decoupling MSSM scenarios, JHEP 10 (2012) 002 [arXiv:1207.0802] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    J. Ke et al., Revisit to non-decoupling MSSM, Phys. Lett. B 723 (2013) 113 [arXiv:1211.2427] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    M. Drees, A supersymmetric explanation of the excess of Higgs-like events at the LHC and at LEP, Phys. Rev. D 86 (2012) 115018 [arXiv:1210.6507] [INSPIRE].ADSGoogle Scholar
  46. [46]
    CMS collaboration, Search for a light charged Higgs boson in top quark decays in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 07 (2012) 143 [arXiv:1205.5736] [INSPIRE].ADSGoogle Scholar
  47. [47]
    ATLAS collaboration, Search for charged Higgs bosons decaying via H + → τ ν in top quark pair events using pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 06 (2012) 039 [arXiv:1204.2760] [INSPIRE].ADSGoogle Scholar
  48. [48]
    ATLAS collaboration, Search for a light charged Higgs boson in the decay channel \( {H^{+}}\to c\overline{s} \) in \( t\overline{t} \) events using pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Eur. Phys. J. C 73 (2013) 2465 [arXiv:1302.3694] [INSPIRE].ADSGoogle Scholar
  49. [49]
    M. Carena, S. Gori, N.R. Shah, C.E. Wagner and L.-T. Wang, Light stau phenomenology and the Higgs γγ rate, JHEP 07 (2012) 175 [arXiv:1205.5842] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    U. Ellwanger, J.F. Gunion and C. Hugonie, NMHDECAY: a fortran code for the Higgs masses, couplings and decay widths in the NMSSM, JHEP 02 (2005) 066 [hep-ph/0406215] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    U. Ellwanger and C. Hugonie, NMHDECAY 2.0: an updated program for sparticle masses, Higgs masses, couplings and decay widths in the NMSSM, Comput. Phys. Commun. 175 (2006) 290 [hep-ph/0508022] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  52. [52]
    G. Bélanger, F. Boudjema, C. Hugonie, A. Pukhov and A. Semenov, Relic density of dark matter in the NMSSM, JCAP 09 (2005) 001 [hep-ph/0505142] [INSPIRE].CrossRefGoogle Scholar
  53. [53]
    ATLAS collaboration, Search for the Standard Model Higgs boson produced in association with top quarks in proton-proton collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, ATLAS-CONF-2012-135, CERN, Geneva Switzerland (2012).
  54. [54]
    ATLAS collaboration, Update of the HW W (∗)eνμν analysis with 13 fb−1 of \( \sqrt{s}=8 \) TeV data collected with the ATLAS detector,ATLAS-CONF-2012-158,CERN, Geneva Switzerland (2012).
  55. [55]
    ATLAS collaboration, Updated ATLAS results on the signal strength of the Higgs-like boson for decays into W W and heavy fermion final states, ATLAS-CONF-2012-162, CERN, Geneva Switzerland (2012).
  56. [56]
    ATLAS collaboration, Study of the channel HZ Z → ℓ+ q \( \overline{q} \) in the mass range 120–180 GeV with the ATLAS detector at \( \sqrt{s}=7 \) TeV, ATLAS-CONF-2012-163, CERN, Geneva Switzerland (2012).
  57. [57]
    ATLAS collaboration, Observation of an excess of events in the search for the Standard Model Higgs boson in the HZZ → 4ℓ channel with the ATLAS detector, ATLAS-CONF-2012-169, CERN, Geneva Switzerland (2012).
  58. [58]
    ATLAS collaboration, An update of combined measurements of the new Higgs-like boson with high mass resolution channels, ATLAS-CONF-2012-170, CERN, Geneva Switzerland (2012).
  59. [59]
    ATLAS collaboration, Search for the Standard Model Higgs boson in H → τ τ decays in proton-proton collisions with the ATLAS detector, ATLAS-CONF-2012-160, CERN, Geneva Switzerland (2012).
  60. [60]
    ATLAS collaboration, Search for the Standard Model Higgs boson in produced in association with a vector boson and decaying to bottom quarks with the ATLAS detector, ATLAS-CONF-2012-161, CERN, Geneva Switzerland (2012).
  61. [61]
    ATLAS collaboration, Observation and study of the Higgs boson candidate in the two photon decay channel with the ATLAS detector at the LHC, ATLAS-CONF-2012-168, CERN, Geneva Switzerland (2012).
  62. [62]
    CMS collaboration, Search for Higgs boson production in association with top quark pairs in pp collisions, CMS-PAS-HIG-12-025, CERN, Geneva Switzerland (2012).
  63. [63]
    CMS collaboration, Updated results on the new boson discovered in the search for the Standard Model Higgs boson in the ZZ → 4ℓ channel in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-12-041, CERN, Geneva Switzerland (2012).
  64. [64]
    CMS collaboration, Evidence for a particle decaying to W + W in the fully leptonic final state in a Standard Model Higgs boson search in pp collisions at the LHC, CMS-PAS-HIG-12-042, CERN, Geneva Switzerland (2012).
  65. [65]
    CMS collaboration, Combination of Standard Model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-12-045, CERN, Geneva Switzerland (2012).
  66. [66]
    CMS collaboration, Search for the Standard Model Higgs boson decaying to τ pairs, CMS-PAS-HIG-12-043, CERN, Geneva Switzerland (2012).
  67. [67]
    CMS collaboration, Search for the Standard Model Higgs boson produced in association with W or Z bosons, and decaying to bottom quarks for HCP 2012, CMS-PAS-HIG-12-044, CERN, Geneva Switzerland (2012).
  68. [68]
    CMS collaboration, Search for MSSM neutral Higgs bosons decaying to τ pairs in pp collisions, CMS-PAS-HIG-12-050, CERN, Geneva Switzerland (2012).
  69. [69]
    CMS collaboration, Search for neutral MSSM Higgs bosons in the μ + μ final state with the CMS experiment in pp collisions at \( \sqrt{s}=7 \) TeV, CMS-PAS-HIG-12-011, CERN, Geneva Switzerland (2012).
  70. [70]
    CMS collaboration, MSSM Higgs production in association with b quarksall hadronic, CMS-PAS-HIG-12-026, CERN, Geneva Switzerland (2012).
  71. [71]
    ALEPH, DELPHI, L3, OPAL, LEP Working Group for Higgs Boson Searches collaborations, S. Schael et al., Search for neutral MSSM Higgs bosons at LEP, Eur. Phys. J. C 47 (2006) 547 [hep-ex/0602042] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    ATLAS collaboration, Search for a supersymmetric top-quark partner in final states with two leptons in \( \sqrt{s}=8 \) TeV pp collisions using 13 fb−1 of ATLAS data, ATLAS-CONF-2012-167, CERN, Geneva Switzerland (2012).
  73. [73]
    ATLAS collaboration, Search for direct production of the top squark in the all-hadronic \( t\overline{t}+E_T^{\mathrm{miss}} \) final state in 21 fb−1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2013-024, CERN, Geneva Switzerland (2013).
  74. [74]
    ATLAS collaboration, Search for direct top squark pair production in final states with one isolated lepton, jets and missing transverse momentum in \( \sqrt{s}=8 \) TeV pp collisions using 21 fb−1 of ATLAS data, ATLAS-CONF-2013-037, CERN, Geneva Switzerland (2013).
  75. [75]
    ATLAS collaboration, Search for light scalar top quark pair production in final states with two leptons with the ATLAS detector in \( \sqrt{s}=7 \) TeV proton-proton collisions, Eur. Phys. J. C 72 (2012) 2237 [arXiv:1208.4305] [INSPIRE].ADSGoogle Scholar
  76. [76]
    ATLAS collaboration, Search for light top squark pair production in final states with leptons and b jets with the ATLAS detector in \( \sqrt{s}=7 \) TeV proton-proton collisions, Phys. Lett. B 720 (2013) 13 [arXiv:1209.2102] [INSPIRE].ADSGoogle Scholar
  77. [77]
    ATLAS collaboration, Search for direct sbottom production in event with two b-jets using 12.8 fb−1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS Detector., ATLAS-CONF-2012-165, CERN, Geneva Switzerland (2012).
  78. [78]
    CMS collaboration, Search for direct top squark pair production in events with a single isolated lepton, jets and missing transverse energy at \( \sqrt{s}=8 \) TeV, CMS-PAS-SUS-12-023, CERN, Geneva Switzerland (2012).
  79. [79]
    Heavy Flavor Averaging Group collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron and τ -lepton properties as of early 2012, arXiv:1207.1158 [INSPIRE].
  80. [80]
    F. Mahmoudi and O. Stal, Flavor constraints on the two-Higgs-doublet model with general Yukawa couplings, Phys. Rev. D 81 (2010) 035016 [arXiv:0907.1791] [INSPIRE].ADSGoogle Scholar
  81. [81]
    T. Han, T. Li, S. Su and L.-T. Wang, SUSY implication for non-decoupling Higgs sector, to appear.Google Scholar
  82. [82]
    M. Carena, S. Gori, N.R. Shah, C.E.M. Wagner and L.-T. Wang, Light stops, light staus and the 125 GeV Higgs, arXiv:1303.4414 [INSPIRE].
  83. [83]
    R. Dermisek and J.F. Gunion, Consistency of LEP event excesses with an haa decay scenario and low-fine-tuning NMSSM models, Phys. Rev. D 73 (2006) 111701 [hep-ph/0510322] [INSPIRE].ADSGoogle Scholar
  84. [84]
    R. Dermisek and J.F. Gunion, The NMSSM close to the R-symmetry limit and naturalness in haa decays for m a <2m b, Phys. Rev. D 75 (2007) 075019 [hep-ph/0611142] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    M. Carena, T. Han, G.-Y. Huang and C.E. Wagner, Higgs signal for haa at hadron colliders, JHEP 04 (2008) 092 [arXiv:0712.2466] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    G. Chalons, M.J. Dolan and C. McCabe, Neutralino dark matter and the Fermi gamma-ray lines, JCAP 02 (2013) 016 [arXiv:1211.5154] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3 and OPAL collaborations, R. Barate et al., Search for the Standard Model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [INSPIRE].ADSGoogle Scholar
  88. [88]
    N.D. Christensen, T. Han and T. Li, Pair production of MSSM Higgs bosons in the non-decoupling region at the LHC, Phys. Rev. D 86 (2012) 074003 [arXiv:1206.5816] [INSPIRE].ADSGoogle Scholar
  89. [89]
    Z. Kang, J. Li, T. Li, D. Liu and J. Shu, Probing the CP-even Higgs sector via H 3H 2 H 1 in the natural NMSSM, arXiv:1301.0453 [INSPIRE].
  90. [90]
    J. Rathsman and T. Rossler, Closing the window on light charged Higgs bosons in the NMSSM, Adv. High Energy Phys. 2012 (2012) 853706 [arXiv:1206.1470] [INSPIRE].Google Scholar
  91. [91]
    D.G. Cerdeno, P. Ghosh and C.B. Park, Probing the two light Higgs scenario in the NMSSM with a low-mass pseudoscalar, JHEP 06 (2013) 031 [arXiv:1301.1325] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    J. Cao, Z. Heng, L. Shang, P. Wan and J.M. Yang, Pair production of a 125 GeV Higgs boson in MSSM and NMSSM at the LHC, JHEP 04 (2013) 134 [arXiv:1301.6437] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Neil Christensen
    • 1
  • Tao Han
    • 1
  • Zhen Liu
    • 1
  • Shufang Su
    • 2
  1. 1.Pittsburgh Particle physics, Astrophysics, and Cosmology Center, Department of Physics & AstronomyUniversity of PittsburghPittsburghUSA
  2. 2.Department of PhysicsUniversity of ArizonaTucsonUSA

Personalised recommendations