Localization and holography in \( \mathcal{N}=2 \) gauge theories

Article

Abstract

We compare exact results from Pestun’s localization [1] of SU(N) \( \mathcal{N}={2^{*}} \) gauge theory on S4 with available holographic models. While localization can explain the Coulomb branch vacuum of the holographic Pilch-Warner flow [2], it disagrees with the holographic Gauntlett et al. [3] vacuum of \( \mathcal{N}=2 \) super Yang-Mills theory. We further compute the free energy of the Pilch-Warner flow on S4 and show that it disagrees with the localization result both for a finite S4 radius, and in the S4 decompactification limit. Thus, neither model represents holographic dual of supersymmetric S4 localization of [1].

Keywords

Supersymmetric gauge theory Gauge-gravity correspondence AdS-CFT Correspondence 

References

  1. [1]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  2. [2]
    K. Pilch and N.P. Warner, N=2 supersymmetric RG flows and the IIB dilaton, Nucl. Phys. B 594 (2001) 209 [hep-th/0004063] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    J.P. Gauntlett, N. Kim, D. Martelli and D. Waldram, Wrapped five-branes and N = 2 super Yang-Mills theory, Phys. Rev. D 64 (2001) 106008 [hep-th/0106117] [INSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  5. [5]
    N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    P.C. Argyres and A.E. Faraggi, The vacuum structure and spectrum of N = 2 supersymmetric SU(N) gauge theory, Phys. Rev. Lett. 74 (1995) 3931 [hep-th/9411057] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A. Buchel, A.W. Peet and J. Polchinski, Gauge dual and noncommutative extension of an N =2 supergravity solution, Phys. Rev. D 63 (2001) 044009 [hep-th/0008076] [INSPIRE].MathSciNetADSGoogle Scholar
  8. [8]
    A. Buchel, J.G. Russo and K. Zarembo, Rigorous Test of Non-conformal Holography: Wilson Loops in N = 2* Theory, JHEP 03 (2013) 062 [arXiv:1301.1597] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    J. Russo and K. Zarembo, Large-N Limit of N = 2 SU(N) Gauge Theories from Localization, JHEP 10 (2012) 082 [arXiv:1207.3806] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    J.G. Russo and K. Zarembo, Evidence for Large-N Phase Transitions in N = 2* Theory, JHEP 04 (2013) 065 [arXiv:1302.6968] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    J.G. Russo, A Note on perturbation series in supersymmetric gauge theories, JHEP 06 (2012) 038 [arXiv:1203.5061] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A. Buchel, Compactifications of the N = 2* flow, Phys. Lett. B 570 (2003) 89 [hep-th/0302107] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    A. Buchel, Gauge/gravity correspondence in accelerating universe, Phys. Rev. D 65 (2002) 125015 [hep-th/0203041] [INSPIRE].MathSciNetADSGoogle Scholar
  14. [14]
    N.J. Evans, C.V. Johnson and M. Petrini, The Enhancon and N = 2 gauge theory: Gravity RG flows, JHEP 10 (2000) 022 [hep-th/0008081] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    A. Buchel, S. Deakin, P. Kerner and J.T. Liu, Thermodynamics of the N = 2* strongly coupled plasma, Nucl. Phys. B 784 (2007) 72 [hep-th/0701142] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    O. Aharony, A. Buchel and P. Kerner, The Black hole in the throat: Thermodynamics of strongly coupled cascading gauge theories, Phys. Rev. D 76 (2007) 086005 [arXiv:0706.1768] [INSPIRE].MathSciNetADSGoogle Scholar
  17. [17]
    A. Buchel, N = 2* hydrodynamics, Nucl. Phys. B 708 (2005) 451 [hep-th/0406200] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    A. Buchel, L. Lehner and R.C. Myers, Thermal quenches in N = 2* plasmas, JHEP 08 (2012) 049 [arXiv:1206.6785] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  2. 2.Department of Applied MathematicsUniversity of Western OntarioLondonCanada

Personalised recommendations