Advertisement

The perturbative partition function of supersymmetric 5D Yang-Mills theory with matter on the five-sphere

  • Johan KällénEmail author
  • Jian Qiu
  • Maxim Zabzine
Article

Abstract

Based on the construction by Hosomichi, Seong and Terashima we consider N = 1 supersymmetric 5D Yang-Mills theory with matter on a five-sphere with radius r. This theory can be thought of as a deformation of the theory in flat space with deformation parameter r and this deformation preserves 8 supercharges. We calculate the full perturbative partition function as a function of \( {{{r} \left/ {{g_Y^2}} \right.}_M} \), where \( {g_Y}_M \) is the Yang-Mills coupling, and the answer is given in terms of a matrix model. We perform the calculation using localization techniques. We also argue that in the large N-limit of this deformed 5D Yang-Mills theory this matrix model provides the leading contribution to the partition function and the rest is exponentially suppressed.

Keywords

Supersymmetric gauge theory Matrix Models Field Theories in Higher Dimensions 1/N Expansion 

References

  1. [1]
    E. Witten, Some comments on string dynamics, hep-th/9507121 [INSPIRE].
  2. [2]
    N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, M5-Branes, D4-branes and Quantum 5D super-Yang-Mills, JHEP 01 (2011) 083 [arXiv:1012.2882] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    N. Lambert, H. Nastase and C. Papageorgakis, 5D Yang-Mills instantons from ABJM Monopoles, Phys. Rev. D 85 (2012) 066002 [arXiv:1111.5619] [INSPIRE].ADSGoogle Scholar
  4. [4]
    M.R. Douglas, On D = 5 super Yang-Mills theory and (2,0) theory, JHEP 02 (2011) 011 [arXiv:1012.2880] [INSPIRE].ADSGoogle Scholar
  5. [5]
    J. Kallen and M. Zabzine, Twisted supersymmetric 5D Yang-Mills theory and contact geometry, JHEP 05 (2012) 125 [arXiv:1202.1956] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    K. Hosomichi, R.-K. Seong and S. Terashima, Supersymmetric Gauge Theories on the Five-Sphere, arXiv:1203.0371 [INSPIRE].
  7. [7]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. [8]
    A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    J. Gomis, T. Okuda and V. Pestun, Exact Results fort Hooft Loops in Gauge Theories on S 4, JHEP 05 (2012) 141 [arXiv:1105.2568] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    D.L. Jafferis, The Exact Superconformal R-Symmetry Extremizes Z, JHEP 05 (2012) 159 [arXiv:1012.3210] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    N. Hama, K. Hosomichi and S. Lee, Notes on SUSY Gauge Theories on Three-Sphere, JHEP 03 (2011) 127 [arXiv:1012.3512] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    N. Hama, K. Hosomichi and S. Lee, SUSY Gauge Theories on Squashed Three-Spheres, JHEP 05 (2011) 014 [arXiv:1102.4716] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    L.F. Alday, M. Fluder and J. Sparks, The Large-N limit of M2-branes on Lens spaces, arXiv:1204.1280 [INSPIRE].
  14. [14]
    F. Benini, T. Nishioka and M. Yamazaki, 4d Index to 3d Index and 2d TQFT, arXiv:1109.0283 [INSPIRE].
  15. [15]
    S. Kim, The Complete superconformal index for N = 6 Chern-Simons theory, Nucl. Phys. B 821 (2009) 241 [Erratum ibid. B 864 (2012) 884] [arXiv:0903.4172] [INSPIRE].
  16. [16]
    K. Ohta and Y. Yoshida, Non-Abelian Localization for Supersymmetric Yang-Mills-Chern-Simons Theories on Seifert Manifold, arXiv:1205.0046 [INSPIRE].
  17. [17]
    J. Kallen, Cohomological localization of Chern-Simons theory, JHEP 08 (2011) 008 [arXiv:1104.5353] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    F. Benini and S. Cremonesi, Partition functions of N=(2,2) gauge theories on S 2 and vortices, arXiv:1206.2356 [INSPIRE].
  19. [19]
    N. Doroud, J. Gomis, B. Le Floch and S. Lee, Exact Results in D = 2 Supersymmetric Gauge Theories, arXiv:1206.2606 [INSPIRE].
  20. [20]
    I.R. Klebanov and A.A. Tseytlin, Entropy of near extremal black p-branes, Nucl. Phys. B 475 (1996) 164 [hep-th/9604089] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory, Commun. Math. Phys. 306 (2011) 511 [arXiv:1007.3837] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  22. [22]
    R.C. Santamaria, M. Mariño and P. Putrov, Unquenched flavor and tropical geometry in strongly coupled Chern-Simons-matter theories, JHEP 10 (2011) 139 [arXiv:1011.6281] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    C.P. Herzog, I.R. Klebanov, S.S. Pufu and T. Tesileanu, Multi-Matrix Models and Tri-Sasaki Einstein Spaces, Phys. Rev. D 83 (2011) 046001 [arXiv:1011.5487] [INSPIRE].ADSGoogle Scholar
  24. [24]
    D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-Theorem: N = 2 Field Theories on the Three-Sphere, JHEP 06 (2011) 102 [arXiv:1103.1181] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    D. Martelli and J. Sparks, The large-N limit of quiver matrix models and Sasaki-Einstein manifolds, Phys. Rev. D 84 (2011) 046008 [arXiv:1102.5289] [INSPIRE].ADSGoogle Scholar
  26. [26]
    Y. Imamura and D. Yokoyama, N = 2 supersymmetric theories on squashed three-sphere, Phys. Rev. D 85 (2012) 025015 [arXiv:1109.4734] [INSPIRE].ADSGoogle Scholar
  27. [27]
    M. Mariño, Lectures on localization and matrix models in supersymmetric Chern-Simons-matter theories, J. Phys. A 44 (2011) 463001 [arXiv:1104.0783] [INSPIRE].ADSGoogle Scholar
  28. [28]
    G. Festuccia and N. Seiberg, Rigid Supersymmetric Theories in Curved Superspace, JHEP 06 (2011) 114 [arXiv:1105.0689] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    C. Klare, A. Tomasiello and A. Zaffaroni, Supersymmetry on Curved Spaces and Holography, arXiv:1205.1062 [INSPIRE].
  30. [30]
    T.T. Dumitrescu, G. Festuccia and N. Seiberg, Exploring Curved Superspace, arXiv:1205.1115 [INSPIRE].
  31. [31]
    M. Wolf, Contact Manifolds, Contact Instantons and Twistor Geometry, JHEP 07 (2012) 074 [arXiv:1203.3423] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    D. Harland and C. Nolle, Instantons and Killing spinors, JHEP 03 (2012) 082 [arXiv:1109.3552] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    M. Atiyah and R. Bott, The Moment map and equivariant cohomology, Topology 23 (1984) 1 [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  34. [34]
    N. Berline and M. Vergne, Zéros dun champ de vecteurs et classes caractéristiques équivariantes, Duke Math. J. 50 (1983) 539.MathSciNetzbMATHCrossRefGoogle Scholar
  35. [35]
    A.S. Schwarz and O. Zaboronsky, Supersymmetry and localization, Commun. Math. Phys. 183 (1997) 463 [hep-th/9511112] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  36. [36]
    D. Salamon, Spin geometry and Seiberg-Witten invariants, University of Warwick, preprint (1996).Google Scholar
  37. [37]
    C. Beasley and E. Witten, Non-Abelian localization for Chern-Simons theory, J. Diff. Geom. 70 (2005) 183 [hep-th/0503126] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  38. [38]
    A. Losev, G.W. Moore, N. Nekrasov and S. Shatashvili, Four-dimensional avatars of two-dimensional RCFT, Nucl. Phys. Proc. Suppl. 46 (1996) 130 [hep-th/9509151] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  39. [39]
    G. Hansjörg, An Introduction to Contact Topology, Cambridge University Press, Cambridge U.K. (2008).zbMATHGoogle Scholar
  40. [40]
    C. Bär, Real Killing spinors and holonomy, Commun. Math. Phys. 154 (1993) 509.ADSzbMATHCrossRefGoogle Scholar
  41. [41]
    A. Moroianu, Parallel and Killing spinors on spin(c) manifolds, Commun. Math. Phys. 187 (1997) 417 [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  42. [42]
    J. Källén, J.A. Minahan, A. Nedelin and M. Zabzine, N 3 -behavior from 5D Yang-Mills theory, arXiv:1207.3763 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  2. 2.I.N.F.N. and Dipartimento di FisicaSesto FiorentinoItaly

Personalised recommendations