Advertisement

Lepton flavour violation: physics potential of a Linear Collider

  • A. AbadaEmail author
  • A. J. R. Figueiredo
  • J. C. Romão
  • A. M. Teixeira
Open Access
Article

Abstract

We revisit the potential of a Linear Collider concerning the study of lepton flavour violation, in view of new LHC bounds and of the (very) recent developments in lepton physics. Working in the framework of a type I supersymmetric seesaw, we evaluate the prospects of observing seesaw-induced lepton flavour violating final states of the type plus missing energy, arising from e + e and e e collisions. In both cases we address the potential background from standard model and supersymmetric charged currents. We also explore the possibility of electron and positron beam polarisation. The statistical significance of the signal, even in the absence of kinematical and/or detector cuts, renders the observation of such flavour violating events feasible over large regions of the parameter space. We further consider the μ μ + \( E_{{^{\text{miss}}}}^T \) final state in the e e beam option finding that, due to a very suppressed background, this process turns out to be a truly clear probe of a supersymmetric seesaw, assuming the latter to be the unique source of lepton flavour violation.

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A.M. Rotunno, Evidence of θ 13> 0 from global neutrino data analysis, Phys. Rev. D 84 (2011) 053007 [arXiv:1106.6028] [INSPIRE].ADSGoogle Scholar
  2. [2]
    P. Minkowski, μeγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].ADSGoogle Scholar
  3. [3]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, P. van Nieuwenhuizen and D.Z. Freedman eds., North-Holland, Amsterdam Netherlands (1979), pg. 315 [Print-80-0576 (CERN)] [INSPIRE].
  4. [4]
    T. Yanagida, Horizontal symmetry and masses of neutrinos, in Proceedings of the Workshop on the Unified Theory and the Baryon Number in the Universe, O. Sawada and A. Sugamoto eds., KEK, Tsukuba Japan (1979), pg. 95 [INSPIRE].
  5. [5]
    S.L. Glashow, The future of elementary particle physics, in Quarks and leptons, M. Lévy et al. eds., Plenum Press, New York U.S.A. (1980), pg. 687 [INSPIRE].CrossRefGoogle Scholar
  6. [6]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A. Abada, C. Biggio, F. Bonnet, M.B. Gavela and T. Hambye, Low energy effects of neutrino masses, JHEP 12 (2007) 061 [arXiv:0707.4058] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    R. Barbieri, D.V. Nanopoulos, G. Morchio and F. Strocchi, Neutrino masses in grand unified theories, Phys. Lett. B 90 (1980) 91 [INSPIRE].ADSGoogle Scholar
  10. [10]
    R.E. Marshak and R.N. Mohapatra, Selection rules for baryon number nonconservation in gauge models, talk given at Orbis Scientiae, Coral Gables U.S.A., 14–17 Jan 1980, VPI-HEP-80/02 [INSPIRE].
  11. [11]
    T.P. Cheng and L.-F. Li, Neutrino masses, mixings and oscillations in SU(2) × U(1) models of electroweak interactions, Phys. Rev. D 22 (1980) 2860 [INSPIRE].ADSGoogle Scholar
  12. [12]
    M. Magg and C. Wetterich, Neutrino mass problem and gauge hierarchy, Phys. Lett. B 94 (1980) 61 [INSPIRE].ADSGoogle Scholar
  13. [13]
    G. Lazarides, Q. Shafi and C. Wetterich, Proton lifetime and fermion masses in an SO(10) model, Nucl. Phys. B 181 (1981) 287 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].ADSGoogle Scholar
  15. [15]
    R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].ADSGoogle Scholar
  16. [16]
    F. Borzumati and A. Masiero, Large muon and electron number violations in supergravity theories, Phys. Rev. Lett. 57 (1986) 961 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J. Hisano, T. Moroi, K. Tobe and M. Yamaguchi, Lepton flavor violation via right-handed neutrino Yukawa couplings in supersymmetric standard model, Phys. Rev. D 53 (1996) 2442 [hep-ph/9510309] [INSPIRE].ADSGoogle Scholar
  18. [18]
    J. Hisano, T. Moroi, K. Tobe, M. Yamaguchi and T. Yanagida, Lepton flavor violation in the supersymmetric standard model with seesaw induced neutrino masses, Phys. Lett. B 357 (1995) 579 [hep-ph/9501407] [INSPIRE].ADSGoogle Scholar
  19. [19]
    J. Hisano and D. Nomura, Solar and atmospheric neutrino oscillations and lepton flavor violation in supersymmetric models with the right-handed neutrinos, Phys. Rev. D 59 (1999) 116005 [hep-ph/9810479] [INSPIRE].ADSGoogle Scholar
  20. [20]
    W. Buchmüller, D. Delepine and F. Vissani, Neutrino mixing and the pattern of supersymmetry breaking, Phys. Lett. B 459 (1999) 171 [hep-ph/9904219] [INSPIRE].ADSGoogle Scholar
  21. [21]
    Y. Kuno and Y. Okada, Muon decay and physics beyond the standard model, Rev. Mod. Phys. 73 (2001) 151 [hep-ph/9909265] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J.R. Ellis, M.E. Gomez, G.K. Leontaris, S. Lola and D.V. Nanopoulos, Charged lepton flavor violation in the light of the Super-Kamiokande data, Eur. Phys. J. C 14 (2000) 319 [hep-ph/9911459] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J.A. Casas and A. Ibarra, Oscillating neutrinos and μe, γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S. Lavignac, I. Masina and C.A. Savoy, τμγ and μeγ as probes of neutrino mass models, Phys. Lett. B 520 (2001) 269 [hep-ph/0106245] [INSPIRE].ADSGoogle Scholar
  25. [25]
    X.-J. Bi and Y.-B. Dai, Lepton flavor violation in the supersymmetric grand unified models with a lopsided mass matrix, Phys. Rev. D 66 (2002) 076006 [hep-ph/0112077] [INSPIRE].ADSGoogle Scholar
  26. [26]
    J.R. Ellis, J. Hisano, M. Raidal and Y. Shimizu, A new parametrization of the seesaw mechanism and applications in supersymmetric models, Phys. Rev. D 66 (2002) 115013 [hep-ph/0206110] [INSPIRE].ADSGoogle Scholar
  27. [27]
    F. Deppisch, H. Pas, A. Redelbach, R. Ruckl and Y. Shimizu, Probing the Majorana mass scale of right-handed neutrinos in mSUGRA, Eur. Phys. J. C 28 (2003) 365 [hep-ph/0206122] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    T. Fukuyama, T. Kikuchi and N. Okada, Lepton flavor violating processes and muon g − 2 in minimal supersymmetric SO(10) model, Phys. Rev. D 68 (2003) 033012 [hep-ph/0304190] [INSPIRE].ADSGoogle Scholar
  29. [29]
    A. Brignole and A. Rossi, Anatomy and phenomenology of μ-τ lepton flavor violation in the MSSM, Nucl. Phys. B 701 (2004) 3 [hep-ph/0404211] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    A. Masiero, S.K. Vempati and O. Vives, Massive neutrinos and flavor violation, New J. Phys. 6 (2004) 202 [hep-ph/0407325] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    T. Fukuyama, A. Ilakovac and T. Kikuchi, Lepton flavor violating leptonic/semileptonic decays of charged leptons in the minimal supersymmetric standard model, Eur. Phys. J. C 56 (2008) 125 [hep-ph/0506295] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S.T. Petcov, W. Rodejohann, T. Shindou and Y. Takanishi, The see-saw mechanism, neutrino Yukawa couplings, LFV decays l il j + γ and leptogenesis, Nucl. Phys. B 739 (2006) 208 [hep-ph/0510404] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    E. Arganda and M.J. Herrero, Testing supersymmetry with lepton flavor violating τ and μ decays, Phys. Rev. D 73 (2006) 055003 [hep-ph/0510405] [INSPIRE].ADSGoogle Scholar
  34. [34]
    F. Deppisch, H. Pas, A. Redelbach and R. Ruckl, Constraints on SUSY seesaw parameters from leptogenesis and lepton flavor violation, Phys. Rev. D 73 (2006) 033004 [hep-ph/0511062] [INSPIRE].ADSGoogle Scholar
  35. [35]
    C.E. Yaguna, Constraining mSUGRA parameters with μeγ and μ-e conversion in nuclei, Int. J. Mod. Phys. A 21 (2006) 1283 [hep-ph/0502014] [INSPIRE].ADSGoogle Scholar
  36. [36]
    L. Calibbi, A. Faccia, A. Masiero and S.K. Vempati, Lepton flavour violation from SUSY-GUTs: where do we stand for MEG, PRISM/PRIME and a super flavour factory, Phys. Rev. D 74 (2006) 116002 [hep-ph/0605139] [INSPIRE].ADSGoogle Scholar
  37. [37]
    S. Antusch, E. Arganda, M.J. Herrero and A.M. Teixeira, Impact of θ 13 on lepton flavour violating processes within SUSY seesaw, JHEP 11 (2006) 090 [hep-ph/0607263] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    E. Arganda, M.J. Herrero and A.M. Teixeira, μ-e conversion in nuclei within the CMSSM seesaw: universality versus non-universality, JHEP 10 (2007) 104 [arXiv:0707.2955] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    E. Arganda, M.J. Herrero and J. Portoles, Lepton flavour violating semileptonic τ decays in constrained MSSM-seesaw scenarios, JHEP 06 (2008) 079 [arXiv:0803.2039] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    N. Arkani-Hamed, H.-C. Cheng, J.L. Feng and L.J. Hall, Probing lepton flavor violation at future colliders, Phys. Rev. Lett. 77 (1996) 1937 [hep-ph/9603431] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    I. Hinchliffe and F.E. Paige, Lepton flavor violation at the CERN LHC, Phys. Rev. D 63 (2001) 115006 [hep-ph/0010086] [INSPIRE].ADSGoogle Scholar
  42. [42]
    D.F. Carvalho, J.R. Ellis, M.E. Gomez, S. Lola and J.C. Romao, τ flavor violation in sparticle decays at the LHC, Phys. Lett. B 618 (2005) 162 [hep-ph/0206148] [INSPIRE].ADSGoogle Scholar
  43. [43]
    M.R. Buckley and H. Murayama, How can we test seesaw experimentally?, Phys. Rev. Lett. 97 (2006) 231801 [hep-ph/0606088] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    M. Hirsch, J.W.F. Valle, W. Porod, J.C. Romao and A. Villanova del Moral, Probing minimal supergravity in type-I seesaw with lepton flavour violation at the LHC, Phys. Rev. D 78 (2008) 013006 [arXiv:0804.4072] [INSPIRE].ADSGoogle Scholar
  45. [45]
    E. Carquin, J. Ellis, M.E. Gomez, S. Lola and J. Rodriguez-Quintero, Search for τ flavour violation at the LHC, JHEP 05 (2009) 026 [arXiv:0812.4243] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    A.J. Buras, L. Calibbi and P. Paradisi, Slepton mass-splittings as a signal of LFV at the LHC, JHEP 06 (2010) 042 [arXiv:0912.1309] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    A. Abada, A.J.R. Figueiredo, J.C. Romao and A.M. Teixeira, Interplay of LFV and slepton mass splittings at the LHC as a probe of the SUSY seesaw, JHEP 10 (2010) 104 [arXiv:1007.4833] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    A. Abada, A.J.R. Figueiredo, J.C. Romao and A.M. Teixeira, Probing the supersymmetric type-III seesaw: LFV at low-energies and at the LHC, JHEP 08 (2011) 099 [arXiv:1104.3962] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    L. Calibbi, R.N. Hodgkinson, J. Jones Perez, A. Masiero and O. Vives, Flavour and collider interplay for SUSY at LHC7, Eur. Phys. J. C 72 (2012) 1863 [arXiv:1111.0176] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    L. Calibbi, R.N. Hodgkinson, J. Jones-Perez, A. Masiero and O. Vives, SUSY flavour at LHC7, PoS(EPS-HEP2011)160 [arXiv:1111.6376] [INSPIRE].
  51. [51]
    I. Galon and Y. Shadmi, Kinematic edges with flavor splitting and mixing, Phys. Rev. D 85 (2012) 015010 [arXiv:1108.2220] [INSPIRE].ADSGoogle Scholar
  52. [52]
    C. Arbelaez, M. Hirsch and L. Reichert, Supersymmetric mass spectra and the seesaw type-I scale, JHEP 02 (2012) 112 [arXiv:1112.4771] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    M.J. Herrero, J. Portoles and A.M. Rodriguez-Sanchez, Sensitivity to the Higgs sector of SUSY-seesaw models in the lepton flavour violating τμf 0(980) decay, Phys. Rev. D 80 (2009) 015023 [arXiv:0903.5151] [INSPIRE].ADSGoogle Scholar
  54. [54]
    ILC collaboration, J. Brau et al., ILC reference design report: ILC global design effort and world wide study, arXiv:0712.1950 [INSPIRE].
  55. [55]
    ILC collaboration, G. Aarons et al., International Linear Collider reference design report volume 2: physics at the ILC, arXiv:0709.1893 [INSPIRE].
  56. [56]
    ILD Concept Group-Linear Collider collaboration, T. Abe et al., The International Large Detector: letter of intent, arXiv:1006.3396 [INSPIRE].
  57. [57]
    CLIC conceptual design report. Volume 2: Physics and detectors at CLIC, https://edms.cern.ch/file/1160419/2/CLIC_CDR_Review_080911.pdf.
  58. [58]
    R.B. Palmer and R. Fernow, An overview of muon colliders, ICFA Beam Dyn. Newslett. 55 (2011) 22 [INSPIRE].Google Scholar
  59. [59]
    J.-J. Blaising et al., Physics performances for scalar electrons, scalar muons and scalar neutrinos searches at CLIC, arXiv:1201.2092 [INSPIRE].
  60. [60]
    H. Baer, C. Balázs, S. Hesselbach, J.K. Mizukoshi and X. Tata, Probing slepton mass nonuniversality at e + e linear colliders, Phys. Rev. D 63 (2001) 095008 [hep-ph/0012205] [INSPIRE].ADSGoogle Scholar
  61. [61]
    A. Freitas, A. von Manteuffel and P.M. Zerwas, Slepton production at e + e and e e linear colliders, Eur. Phys. J. C 34 (2004) 487 [hep-ph/0310182] [INSPIRE].ADSGoogle Scholar
  62. [62]
    A. Freitas, A. von Manteuffel and P.M. Zerwas, Slepton production at e + e and e e linear colliders: addendum, Eur. Phys. J. C 40 (2005) 435 [hep-ph/0408341] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    A. Freitas, Feasibility of slepton precision measurements at a muon collider, arXiv:1107.3853 [INSPIRE].
  64. [64]
    G. Moortgat-Pick, Impact of polarized e and e + beams at a future linear collider and a Z-factory. Part I: fundamentals in polarization and electroweak precision physics, DESY-10-242 [INSPIRE].
  65. [65]
    G. Moortgat-Pick, Impact of polarized e and e + beams at a future linear collider and a Z-factory. Part II: physics beyond the standard model, DESY-10-243, [J. Phys. Conf. Ser. 298 (2011) 012001] [INSPIRE].
  66. [66]
    LHC/LC Study Group collaboration, G. Weiglein et al., Physics interplay of the LHC and the ILC, Phys. Rept. 426 (2006) 47 [hep-ph/0410364] [INSPIRE].CrossRefGoogle Scholar
  67. [67]
    J.A. Aguilar-Saavedra, CP violation in \( \widetilde{\chi }_1^0\widetilde{\chi }_2^0 \) production at a linear collider, Nucl. Phys. B 697 (2004) 207 [hep-ph/0404104] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    J.A. Aguilar-Saavedra, Sneutrino cascade decays \( {\widetilde{\nu }_e} \to {e^{ - }}\widetilde{\chi }_1^{ + } \to {e^{ - }}f\overline f \prime \widetilde{\chi }_1^0 \) as a probe of chargino spin properties and CP-violation, Nucl. Phys. B 717 (2005) 119 [hep-ph/0410068] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    O. Kittel, G. Moortgat-Pick, K. Rolbiecki, P. Schade and M. Terwort, Measurement of CP asymmetries in neutralino production at the ILC, Eur. Phys. J. C 72 (2012) 1854 [arXiv:1108.3220] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    J.A. Aguilar-Saavedra and A.M. Teixeira, Testing the Majorana nature of neutralinos in supersymmetric theories, Nucl. Phys. B 675 (2003) 70 [hep-ph/0307001] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    S.Y. Choi, M. Drees, A. Freitas and P.M. Zerwas, Testing the Majorana nature of gluinos and neutralinos, Phys. Rev. D 78 (2008) 095007 [arXiv:0808.2410] [INSPIRE].ADSGoogle Scholar
  72. [72]
    M. Cannoni, S. Kolb and O. Panella, On the heavy Majorana neutrino and light sneutrino contribution to e e , ( = μ, τ), Eur. Phys. J. C 28 (2003) 375 [hep-ph/0209120] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    N. Arkani-Hamed, J.L. Feng, L.J. Hall and H.-C. Cheng, CP violation from slepton oscillations at the LHC and NLC, Nucl. Phys. B 505 (1997) 3 [hep-ph/9704205] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    J. Hisano, M.M. Nojiri, Y. Shimizu and M. Tanaka, Lepton flavor violation in the left-handed slepton production at future lepton colliders, Phys. Rev. D 60 (1999) 055008 [hep-ph/9808410] [INSPIRE].ADSGoogle Scholar
  75. [75]
    M. Guchait, J. Kalinowski and P. Roy, Supersymmetric lepton flavor violation in a linear collider: the role of charginos, Eur. Phys. J. C 21 (2001) 163 [hep-ph/0103161] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    M. Cannoni, S. Kolb and O. Panella, Lepton flavor violation in e ± e l ± e (l = μ, τ) induced by R conserving supersymmetry, Phys. Rev. D 68 (2003) 096002 [hep-ph/0306170] [INSPIRE].ADSGoogle Scholar
  77. [77]
    E. Carquin, J. Ellis, M.E. Gomez and S. Lola, Searches for lepton flavour violation at a linear collider, JHEP 11 (2011) 050 [arXiv:1106.4903] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    F. Deppisch, H. Pas, A. Redelbach, R. Ruckl and Y. Shimizu, The SUSY seesaw model and lepton flavor violation at a future electron positron linear collider, Phys. Rev. D 69 (2004) 054014 [hep-ph/0310053] [INSPIRE].ADSGoogle Scholar
  79. [79]
    F. Deppisch, J. Kalinowski, H. Pas, A. Redelbach and R. Ruckl, Supersymmetric lepton flavor violation at the LHC and LC, hep-ph/0401243 [INSPIRE].
  80. [80]
    I.F. Ginzburg, G.L. Kotkin, V.G. Serbo and V.I. Telnov, Colliding γe and γγ beams based on the single-pass e ± e colliders (VLEPP type), Nucl. Instrum. Meth. 205 (1983) 47 [INSPIRE].CrossRefGoogle Scholar
  81. [81]
    I.F. Ginzburg, G.L. Kotkin, S.L. Panfil, V.G. Serbo and V.I. Telnov, Colliding γe and γγ beams based on single pass e + e accelerators II. Polarization effects, monochromatization improvement, Nucl. Instrum. Meth. A 219 (1984) 5 [INSPIRE].Google Scholar
  82. [82]
    M. Cannoni, C. Carimalo, W. Da Silva and O. Panella, Testing SUSY models of lepton flavor violation at a photon collider, Phys. Rev. D 72 (2005) 115004 [Erratum ibid. D 72 (2005) 119907] [hep-ph/0508256] [INSPIRE].
  83. [83]
    T. Schwetz, M. Tortola and J.W.F. Valle, Where we are on θ 13 : addendum toGlobal neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters’, New J. Phys. 13 (2011) 109401 [arXiv:1108.1376] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    DOUBLE-CHOOZ collaboration, Y. Abe et al., Indication for the disappearance of reactor electron antineutrinos in the Double CHOOZ experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    T2K collaboration, M. Hartz, First oscillation results for the T2K experiment, arXiv:1201.1846 [INSPIRE].
  86. [86]
    MINOS collaboration, P. Adamson et al., An improved measurement of muon antineutrino disappearance in MINOS, Phys. Rev. Lett. 108 (2012) 191801 [arXiv:1202.2772] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    DAYA-BAY collaboration, F.P. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    RENO collaboration, J.K. Ahn et al., Observation of reactor electron antineutrino disappearance in the RENO experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    ATLAS collaboration, G. Aad et al., Search for diphoton events with large missing transverse energy with 36 pb −1 of 7 TeV proton-proton collision data with the ATLAS detector, Eur. Phys. J. C 71 (2011) 1744 [arXiv:1107.0561] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    ATLAS collaboration, G. Aad et al., Search for supersymmetric particles in events with lepton pairs and large missing transverse momentum in \( \sqrt {s} = {7} \) TeV proton-proton collisions with the ATLAS experiment, Eur. Phys. J. C 71 (2011) 1682 [arXiv:1103.6214] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    ATLAS collaboration, G. Aad et al., Search for an excess of events with an identical flavour lepton pair and significant missing transverse momentum in \( \sqrt {s} = {7} \) TeV proton-proton collisions with the ATLAS detector, Eur. Phys. J. C 71 (2011) 1647 [arXiv:1103.6208] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    ATLAS collaboration, G. Aad et al., Search for supersymmetry in pp collisions at \( \sqrt {s} = {7} \) TeV in final states with missing transverse momentum and b-jets, Phys. Lett. B 701 (2011) 398 [arXiv:1103.4344] [INSPIRE].ADSGoogle Scholar
  93. [93]
    ATLAS collaboration, G. Aad et al., Search for stable hadronising squarks and gluinos with the ATLAS experiment at the LHC, Phys. Lett. B 701 (2011) 1 [arXiv:1103.1984] [INSPIRE].ADSGoogle Scholar
  94. [94]
    ATLAS collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = {7} \) TeV proton-proton collisions, Phys. Lett. B 701 (2011) 186 [arXiv:1102.5290] [INSPIRE].ADSGoogle Scholar
  95. [95]
    ATLAS collaboration, G. Aad et al., Search for supersymmetry using final states with one lepton, jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = {7} \) TeV pp, Phys. Rev. Lett. 106 (2011) 131802 [arXiv:1102.2357] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    CMS collaboration, S. Chatrchyan et al., Search for supersymmetry at the LHC in events with jets and missing transverse energy, CERN-PH-EP-2011-138 (2011).
  97. [97]
    CMS collaboration, S. Chatrchyan et al., Search for supersymmetry in pp collisions at \( \sqrt {s} = {7} \) TeV in events with a single lepton, jets and missing transverse momentum, JHEP 08 (2011) 156 [arXiv:1107.1870] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    CMS collaboration, S. Chatrchyan et al., Inclusive search for squarks and gluinos in pp collisions at \( \sqrt {s} = {7} \) TeV, Phys. Rev. D 85 (2012) 012004 [arXiv:1107.1279] [INSPIRE].ADSGoogle Scholar
  99. [99]
    CMS collaboration, S. Chatrchyan et al., Search for new physics with jets and missing transverse momentum in pp collisions at \( \sqrt {s} = {7} \) TeV, JHEP 08 (2011) 155 [arXiv:1106.4503] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    CMS collaboration, S. Chatrchyan et al., Search for supersymmetry in events with b jets and missing transverse momentum at the LHC, JHEP 07 (2011) 113 [arXiv:1106.3272] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    CMS collaboration, S. Chatrchyan et al., Search for physics beyond the standard model using multilepton signatures in pp collisions at \( \sqrt {s} = {7} \) TeV, Phys. Lett. B 704 (2011) 411 [arXiv:1106.0933] [INSPIRE].ADSGoogle Scholar
  102. [102]
    CMS collaboration, S. Chatrchyan et al., Search for supersymmetry in events with a lepton, a photon and large missing transverse energy in pp collisions at \( \sqrt {s} = {7} \) TeV, JHEP 06 (2011) 093 [arXiv:1105.3152] [INSPIRE].ADSGoogle Scholar
  103. [103]
    CMS collaboration, S. Chatrchyan et al., Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy at the LHC, JHEP 06 (2011) 077 [arXiv:1104.3168] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    CMS collaboration, S. Chatrchyan et al., Search for physics beyond the standard model in opposite-sign dilepton events at \( \sqrt {s} = {7} \) TeV, JHEP 06 (2011) 026 [arXiv:1103.1348] [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    CMS collaboration, S. Chatrchyan et al., Search for supersymmetry in pp collisions at \( \sqrt {s} = {7} \) TeV in events with two photons and missing transverse energy, Phys. Rev. Lett. 106 (2011) 211802 [arXiv:1103.0953] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    CMS collaboration, V. Khachatryan et al., Search for supersymmetry in pp collisions at 7 TeV in events with jets and missing transverse energy, Phys. Lett. B 698 (2011) 196 [arXiv:1101.1628] [INSPIRE].ADSGoogle Scholar
  107. [107]
    CMS collaboration, V. Khachatryan et al., Search for stopped gluinos in pp collisions at \( \sqrt {s} = {7} \) TeV, Phys. Rev. Lett. 106 (2011) 011801 [arXiv:1011.5861] [INSPIRE].ADSCrossRefGoogle Scholar
  108. [108]
    Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [INSPIRE].ADSGoogle Scholar
  109. [109]
    MEG collaboration, J. Adam et al., New limit on the lepton-flavour violating decay μ +e + γ, Phys. Rev. Lett. 107 (2011) 171801 [arXiv:1107.5547] [INSPIRE].ADSCrossRefGoogle Scholar
  110. [110]
    Mu2e collaboration, D. Glenzinski, The Mu2e experiment at Fermilab, AIP Conf. Proc. 1222 (2010) 383 [INSPIRE].ADSCrossRefGoogle Scholar
  111. [111]
    COMET collaboration, Y.G. Cui et al., Conceptual design report for experimental search for lepton flavor violating μ -e conversion at sensitivity of 10−16 with a slow-extracted bunched proton beam (COMET), KEK-2009-10 [INSPIRE].
  112. [112]
    B. Pontecorvo, Mesonium and anti-mesonium, Sov. Phys. JETP 6 (1957) 429 [Zh. Eksp. Teor. Fiz. 33 (1957) 549] [INSPIRE].
  113. [113]
    Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  114. [114]
    LHCb collaboration, R. Aaij et al., Strong constraints on the rare decays B sμ + μ and B 0μ + μ , Phys. Rev. Lett. 108 (2012) 231801 [arXiv:1203.4493] [INSPIRE].ADSCrossRefGoogle Scholar
  115. [115]
    D. Larson et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: power spectra and WMAP-derived parameters, Astrophys. J. Suppl. 192 (2011) 16 [arXiv:1001.4635] [INSPIRE].ADSCrossRefGoogle Scholar
  116. [116]
    M. Raidal et al., Flavour physics of leptons and dipole moments, Eur. Phys. J. C 57 (2008) 13 [arXiv:0801.1826] [INSPIRE].ADSCrossRefGoogle Scholar
  117. [117]
    M.C. Gonzalez-Garcia, M. Maltoni and J. Salvado, Updated global fit to three neutrino mixing: status of the hints of θ 13> 0, JHEP 04 (2010) 056 [arXiv:1001.4524] [INSPIRE].ADSCrossRefGoogle Scholar
  118. [118]
    H. Baer and J. List, Post LHC7 SUSY benchmark points for ILC physics, arXiv:1205.6929 [INSPIRE].
  119. [119]
    S.S. AbdusSalam et al., Benchmark models, planes, lines and points for future SUSY searches at the LHC, Eur. Phys. J. C 71 (2011) 1835 [arXiv:1109.3859] [INSPIRE].ADSCrossRefGoogle Scholar
  120. [120]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  121. [121]
    W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [INSPIRE].ADSCrossRefGoogle Scholar
  122. [122]
    ATLAS collaboration, G. Aad et al., Combined search for the standard model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt {s} = {7} \) TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].ADSGoogle Scholar
  123. [123]
    CMS collaboration, S. Chatrchyan et al., Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt {s} = {7} \) TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].ADSGoogle Scholar
  124. [124]
    A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Implications of a 125 GeV Higgs for supersymmetric models, Phys. Lett. B 708 (2012) 162 [arXiv:1112.3028] [INSPIRE].ADSGoogle Scholar
  125. [125]
    M. Battaglia et al., Physics performances for scalar electrons, scalar muons and scalar neutrinos searches at CLIC, LCD-Note-2011-018 (2011).

Copyright information

© SISSA 2012

Authors and Affiliations

  • A. Abada
    • 1
    Email author
  • A. J. R. Figueiredo
    • 2
    • 3
  • J. C. Romão
    • 2
  • A. M. Teixeira
    • 3
  1. 1.Laboratoire de Physique Théorique, CNRS-UMR 8627Université de Paris-Sud 11Orsay CedexFrance
  2. 2.Centro de Física Teórica de PartículasInstituto Superior TécnicoLisboaPortugal
  3. 3.Laboratoire de Physique Corpusculaire, CNRS/IN2P3-UMR 6533Aubière CedexFrance

Personalised recommendations