Advertisement

The quark anti-quark potential and the cusp anomalous dimension from a TBA equation

  • Diego Correa
  • Juan Maldacena
  • Amit SeverEmail author
Article

Abstract

We derive a set of integral equations of the TBA type for the generalized cusp anomalous dimension, or the quark antiquark potential on the three sphere, as a function of the angles. We do this by considering a family of local operators on a Wilson loop with charge L. In the large L limit the problem can be solved in terms of a certain boundary reflection matrix. We determine this reflection matrix by using the symmetries and the boundary crossing equation. The cusp is introduced through a relative rotation between the two boundaries. Then the TBA trick of exchanging space and time leads to an exact equation for all values of L. The L = 0 case corresponds to the cusped Wilson loop with no operators inserted. We then derive a slightly simplified integral equation which describes the small angle limit. We solve this equation up to three loops in perturbation theory and match the results that were obtained with more direct approaches.

Keywords

Wilson ’t Hooft and Polyakov loops AdS-CFT Correspondence Integrable Field Theories Scattering Amplitudes 

References

  1. [1]
    A.M. Polyakov, Gauge Fields as Rings of Glue, Nucl. Phys. B 164 (1980) 171 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    N. Drukker, D.J. Gross and H. Ooguri, Wilson loops and minimal surfaces, Phys. Rev. D 60 (1999) 125006 [hep-th/9904191] [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    G. Korchemsky and A. Radyushkin, Infrared factorization, Wilson lines and the heavy quark limit, Phys. Lett. B 279 (1992) 359 [hep-ph/9203222] [INSPIRE].ADSGoogle Scholar
  4. [4]
    T. Becher and M. Neubert, Infrared singularities of QCD amplitudes with massive partons, Phys. Rev. D 79 (2009) 125004 [Erratum ibid. D 80 (2009) 109901] [arXiv:0904.1021] [INSPIRE].
  5. [5]
    D. Correa, J. Henn, J. Maldacena and A. Sever, The cusp anomalous dimension at three loops and beyond, JHEP 05 (2012) 098 [arXiv:1203.1019] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    N. Beisert, B. Eden and M. Staudacher, Transcendentality and Crossing, J. Stat. Mech. 0701 (2007) P01021 [hep-th/0610251] [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    A. Pineda, The Static potential in N = 4 supersymmetric Yang-Mills at weak coupling, Phys. Rev. D 77 (2008) 021701 [arXiv:0709.2876] [INSPIRE].MathSciNetADSGoogle Scholar
  8. [8]
    D. Correa, J. Henn, J. Maldacena and A. Sever, An exact formula for the radiation of a moving quark in N = 4 super Yang-Mills, JHEP 06 (2012) 048 [arXiv:1202.4455] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    B. Fiol, B. Garolera and A. Lewkowycz, Exact results for static and radiative fields of a quark in N = 4 super Yang-Mills, JHEP 05 (2012) 093 [arXiv:1202.5292] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N = 4 super Yang-Mills, JHEP 04 (2002) 013 [hep-th/0202021] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    N. Drukker and S. Kawamoto, Small deformations of supersymmetric Wilson loops and open spin-chains, JHEP 07 (2006) 024 [hep-th/0604124] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    N. Beisert et al., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    N. Beisert, The SU(2|2) dynamic S-matrix, Adv. Theor. Math. Phys. 12 (2008) 945 [hep-th/0511082] [INSPIRE].MathSciNetGoogle Scholar
  14. [14]
    D.M. Hofman and J.M. Maldacena, Reflecting magnons, JHEP 11 (2007) 063 [arXiv:0708.2272] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    D. Correa and C. Young, Reflecting magnons from D7 and D5 branes, J. Phys. A 41 (2008) [arXiv:0808.0452] [INSPIRE].
  16. [16]
    D.H. Correa, V. Regelskis and C.A. Young, Integrable achiral D5-brane reflections and asymptotic Bethe equations, J. Phys. A 44 (2011) 325403 [arXiv:1105.3707] [INSPIRE].MathSciNetGoogle Scholar
  17. [17]
    S. Ghoshal and A.B. Zamolodchikov, Boundary S matrix and boundary state in two-dimensional integrable quantum field theory, Int. J. Mod. Phys. A 9 (1994) 3841 [Erratum ibid. A 9 (1994) 4353] [hep-th/9306002] [INSPIRE].
  18. [18]
    A. LeClair, G. Mussardo, H. Saleur and S. Skorik, Boundary energy and boundary states in integrable quantum field theories, Nucl. Phys. B 453 (1995) 581 [hep-th/9503227] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    K. Zarembo, Supersymmetric Wilson loops, Nucl. Phys. B 643 (2002) 157 [hep-th/0205160] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    N. Beisert and M. Staudacher, Long-range PSU(2, 2|4) Bethe Ansatze for gauge theory and strings, Nucl. Phys. B 727 (2005) 1 [hep-th/0504190] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    D. Volin, Minimal solution of the AdS/CFT crossing equation, J. Phys. A 42 (2009) 372001 [arXiv:0904.4929] [INSPIRE].MathSciNetGoogle Scholar
  22. [22]
    P. Vieira and D. Volin, Review of AdS/CFT Integrability, Chapter III.3: The Dressing factor, Lett. Math. Phys. 99 (2012) 231 [arXiv:1012.3992] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. [23]
    Z. Bajnok, L. Palla and G. Takács, Finite size effects in quantum field theories with boundary from scattering data, Nucl. Phys. B 716 (2005) 519 [hep-th/0412192] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    N. Drukker, Integrable Wilson loops, arXiv:1203.1617.
  25. [25]
    N. Beisert, The Analytic Bethe Ansatz for a Chain with Centrally Extended SU(2|2) Symmetry, J. Stat. Mech. (2007) P01017 [nlin/0610017].
  26. [26]
    N. Beisert, R. Hernandez and E. Lopez, A Crossing-symmetric phase for AdS 5 × S 5 strings, JHEP 11 (2006) 070 [hep-th/0609044] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    S. Yamaguchi, Wilson loops of anti-symmetric representation and D5-branes, JHEP 05 (2006) 037 [hep-th/0603208] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    D.M. Hofman and J.M. Maldacena, Giant Magnons, J. Phys. A 39 (2006) 13095 [hep-th/0604135] [INSPIRE].MathSciNetGoogle Scholar
  29. [29]
    G. Arutyunov and S. Frolov, On String S-matrix, Bound States and TBA, JHEP 12 (2007) 024 [arXiv:0710.1568] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    D. Correa and C. Young, Finite size corrections for open strings/open chains in planar AdS/CFT, JHEP 08 (2009) 097 [arXiv:0905.1700] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    A. Zamolodchikov, Thermodynamic Bethe ansatz in relativistic models. Scaling three state potts and Lee-Yang models, Nucl. Phys. B 342 (1990) 695 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    G. Arutyunov and S. Frolov, String hypothesis for the AdS 5 × S 5 mirror, JHEP 03 (2009) 152 [arXiv:0901.1417] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    C.-N. Yang and C. Yang, Thermodynamics of one-dimensional system of bosons with repulsive delta function interaction, J. Math. Phys. 10 (1969) 1115 [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  34. [34]
    D. Bombardelli, D. Fioravanti and R. Tateo, Thermodynamic Bethe Ansatz for planar AdS/CFT: A Proposal, J. Phys. A 42 (2009) 375401 [arXiv:0902.3930] [INSPIRE].MathSciNetGoogle Scholar
  35. [35]
    G. Arutyunov and S. Frolov, Thermodynamic Bethe Ansatz for the AdS 5 × S 5 Mirror Model, JHEP 05 (2009) 068 [arXiv:0903.0141] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    N. Gromov, V. Kazakov, A. Kozak and P. Vieira, Exact Spectrum of Anomalous Dimensions of Planar N = 4 Supersymmetric Yang-Mills Theory: TBA and excited states, Lett. Math. Phys. 91 (2010) 265 [arXiv:0902.4458] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  37. [37]
    N. Gromov, V. Kazakov and P. Vieira, Exact Spectrum of Anomalous Dimensions of Planar N = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 103 (2009) 131601 [arXiv:0901.3753] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    N. Gromov, V. Kazakov, A. Kozak and P. Vieira, Exact Spectrum of Anomalous Dimensions of Planar N = 4 Supersymmetric Yang-Mills Theory: TBA and excited states, Lett. Math. Phys. 91 (2010) 265 [arXiv:0902.4458] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  39. [39]
    P. Dorey and R. Tateo, Excited states by analytic continuation of TBA equations, Nucl. Phys. B 482 (1996) 639 [hep-th/9607167] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable quantum field theories in finite volume: Excited state energies, Nucl. Phys. B 489 (1997) 487 [hep-th/9607099] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    S. Frolov and R. Suzuki, Temperature quantization from the TBA equations, Phys. Lett. B 679 (2009) 60 [arXiv:0906.0499] [INSPIRE].MathSciNetADSGoogle Scholar
  42. [42]
    G. Arutyunov and S. Frolov, Simplified TBA equations of the AdS 5 × S 5 mirror model, JHEP 11 (2009) 019 [arXiv:0907.2647] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    G. Arutyunov, S. Frolov and R. Suzuki, Exploring the mirror TBA, JHEP 05 (2010) 031 [arXiv:0911.2224] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    N. Gromov, V. Kazakov, S. Leurent and D. Volin, Solving the AdS/CFT Y-system, JHEP 07 (2012) 023 [arXiv:1110.0562] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    N. Gromov and P. Vieira, The all loop AdS4/CFT3 Bethe ansatz, JHEP 01 (2009) 016 [arXiv:0807.0777] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    V. Forini, Quark-antiquark potential in AdS at one loop, JHEP 11 (2010) 079 [arXiv:1009.3939] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    N. Drukker and V. Forini, Generalized quark-antiquark potential at weak and strong coupling, JHEP 06 (2011) 131 [arXiv:1105.5144] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    N. Gromov, Y-system and Quasi-Classical Strings, JHEP 01 (2010) 112 [arXiv:0910.3608] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    N. Gromov and F. Levkovich-Maslyuk, Y-system, TBA and Quasi-Classical strings in AdS 4 × CP 3, JHEP 06 (2010) 088 [arXiv:0912.4911] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    N. Gromov, V. Kazakov and P. Vieira, Exact Spectrum of Planar \( \mathcal{N} = 4 \) Supersymmetric Yang-Mills Theory: Konishi Dimension at Any Coupling, Phys. Rev. Lett. 104 (2010) 211601 [arXiv:0906.4240] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    L.F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT, JHEP 11 (2007) 068 [arXiv:0710.1060] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    N. Dorey, D.M. Hofman and J.M. Maldacena, On the Singularities of the Magnon S-matrix, Phys. Rev. D 76 (2007) 025011 [hep-th/0703104] [INSPIRE].MathSciNetADSGoogle Scholar
  54. [54]
    G. Arutyunov and S. Frolov, The Dressing Factor and Crossing Equations, J. Phys. A 42 (2009) 425401 [arXiv:0904.4575] [INSPIRE].MathSciNetADSGoogle Scholar
  55. [55]
    V. Kazakov, A.S. Sorin and A. Zabrodin, Supersymmetric Bethe ansatz and Baxter equations from discrete Hirota dynamics, Nucl. Phys. B 790 (2008) 345 [hep-th/0703147] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    Z. Tsuboi, Analytic Bethe ansatz and functional equations for Lie superalgebra sl(r + 1|s + 1), J. Phys. A 30 (1997) 7975 [arXiv:0911.5386] [INSPIRE].MathSciNetADSGoogle Scholar
  57. [57]
    N. Beisert, V. Kazakov, K. Sakai and K. Zarembo, Complete spectrum of long operators in N = 4 SYM at one loop, JHEP 07 (2005) 030 [hep-th/0503200] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    N. Gromov and V. Kazakov, Review of AdS/CFT Integrability, Chapter III.7: Hirota Dynamics for Quantum Integrability, Lett. Math. Phys. 99 (2012) 321 [arXiv:1012.3996] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  59. [59]
    C. Ahn, Z. Bajnok, D. Bombardelli and R.I. Nepomechie, TBA, NLO Lüscher correction and double wrapping in twisted AdS/CFT, JHEP 12 (2011) 059 [arXiv:1108.4914] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    M. de Leeuw and S.J. van Tongeren, The spectral problem for strings on twisted AdS 5 × S 5, Nucl. Phys. B 860 (2012) 339 [arXiv:1201.1451] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    A. Dekel and Y. Oz, Integrability of Green-Schwarz σ-models with Boundaries, JHEP 08 (2011) 004 [arXiv:1106.3446] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Instituto de Física La PlataUniversidad Nacional de La PlataLa PlataArgentina
  2. 2.School of Natural SciencesInstitute for Advanced StudyPrincetonU.S.A.
  3. 3.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations