Journal of High Energy Physics

, 2012:126

QCD thermodynamics with continuum extrapolated Wilson fermions I

  • Szabolcs Borsányi
  • Stephan Dürr
  • Zoltán Fodor
  • Christian Hoelbling
  • Sándor D. Katz
  • Stefan Krieg
  • Dániel Nógrádi
  • Kálmán K. Szabó
  • Bálint C. Tóth
  • Norbert Trombitás
Article

Abstract

QCD thermodynamics is considered using Wilson fermions in the fixed scale approach. The temperature dependence of the renormalized chiral condensate, quark number susceptibility and Polyakov loop is measured at four lattice spacings allowing for a controlled continuum limit. The light quark masses are fixed to heavier than physical values in this first study. Finite volume effects are ensured to be negligible by using approriately large box sizes. The final continuum results are compared with staggered fermion simulations performed in the fixed Nt approach. The same continuum renormalization conditions are used in both approaches and the final results agree perfectly.

Keywords

Lattice QCD Lattice Quantum Field Theory 

References

  1. [1]
    Y. Aoki, G. Endrodi, Z. Fodor, S. Katz and K. Szabo, The order of the quantum chromodynamics transition predicted by the standard model of particle physics, Nature 443 (2006) 675 [hep-lat/0611014] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    D.J. Schwarz, The first second of the universe, Annalen Phys. 12 (2003) 220 [astro-ph/0303574] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  3. [3]
    Z. Fodor and S. Katz, The phase diagram of quantum chromodynamics, arXiv:0908.3341 [INSPIRE].
  4. [4]
    G. Endrodi, Z. Fodor, S. Katz and K. Szabo, The QCD phase diagram at nonzero quark density, JHEP 04 (2011) 001 [arXiv:1102.1356] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    P. de Forcrand, S. Kim and O. Philipsen, A QCD chiral critical point at small chemical potential: is it there or not?, PoS(LATTICE 2007)178 [arXiv:0711.0262] [INSPIRE].
  6. [6]
    G. Endrodi, Z. Fodor, S. Katz and K. Szabo, The nature of the finite temperature QCD transition as a function of the quark masses, PoS(LATTICE 2007)182 [arXiv:0710.0998] [INSPIRE].
  7. [7]
    F. Karsch, E. Laermann and C. Schmidt, The chiral critical point in three-flavor QCD, Phys. Lett. B 520 (2001) 41 [hep-lat/0107020] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    Y. Aoki, Z. Fodor, S. Katz and K. Szabo, The QCD transition temperature: results with physical masses in the continuum limit, Phys. Lett. B 643 (2006) 46 [hep-lat/0609068] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    Y. Aoki et al., The QCD transition temperature: results with physical masses in the continuum limit II, JHEP 06 (2009) 088 [arXiv:0903.4155] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    A. Bazavov et al., The chiral and deconfinement aspects of the QCD transition, Phys. Rev. D 85 (2012) 054503 [arXiv:1111.1710] [INSPIRE].ADSGoogle Scholar
  11. [11]
    S. Borsányi et al., Fluctuations of conserved charges at finite temperature from lattice QCD, JHEP 01 (2012) 138 [arXiv:1112.4416] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    Z. Fodor and S. Katz, A new method to study lattice QCD at finite temperature and chemical potential, Phys. Lett. B 534 (2002) 87 [hep-lat/0104001] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    Z. Fodor and S. Katz, Critical point of QCD at finite T and μ, lattice results for physical quark masses, JHEP 04 (2004) 050 [hep-lat/0402006] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    T. Umeda et al., Fixed scale approach to equation of state in lattice QCD, Phys. Rev. D 79 (2009) 051501 [arXiv:0809.2842] [INSPIRE].ADSGoogle Scholar
  15. [15]
    WHOT-QCD collaboration, S. Ejiri et al., Equation of state and heavy-quark free energy at finite temperature and density in two flavor lattice QCD with wilson quark action, Phys. Rev. D 82 (2010) 014508 [arXiv:0909.2121] [INSPIRE].ADSGoogle Scholar
  16. [16]
    WHOT-QCD collaboration, Y. Maezawa et al., Free energies of heavy quarks in full-QCD lattice simulations with Wilson-type quark action, Nucl. Phys. A 830 (2009) 247C-250C [arXiv:0907.4203] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    V. Bornyakov et al., Probing the finite temperature phase transition with N f = 2 nonperturbatively improved Wilson fermions, Phys. Rev. D 82 (2010) 014504 [arXiv:0910.2392] [INSPIRE].ADSGoogle Scholar
  18. [18]
    WHOT-QCD collaboration, T. Umeda et al., EOS in 2 + 1 flavor QCD with improved Wilson quarks by the fixed-scale approach, PoS(LATTICE 2010)218 [arXiv:1011.2548] [INSPIRE].
  19. [19]
    Y. Maezawa et al., Application of fixed scale approach to static quark free energies in quenched and 2 + 1 flavor lattice QCD with improved Wilson quark action, arXiv:1112.2756 [INSPIRE].
  20. [20]
    WHOT-QCD collaboration, T. Umeda et al., Equation of state in 2 + 1 flavor QCD with improved Wilson quarks by the fixed scale approach, Phys. Rev. D 85 (2012) 094508 [arXiv:1202.4719] [INSPIRE].ADSGoogle Scholar
  21. [21]
    S. Dürr et al., Scaling study of dynamical smeared-link clover fermions, Phys. Rev. D 79 (2009) 014501 [arXiv:0802.2706] [INSPIRE].ADSGoogle Scholar
  22. [22]
    K. Symanzik, Continuum limit and improved action in lattice theories. 1. Principles and ϕ 4 theory, Nucl. Phys. B 226 (1983) 187 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    M. Lüscher and P. Weisz, On-shell improved lattice gauge theories, Commun. Math. Phys. 97 (1985) 59 [Erratum ibid. 98 (1985) 433] [INSPIRE].Google Scholar
  24. [24]
    B. Sheikholeslami and R. Wohlert, Improved continuum limit lattice action for QCD with Wilson fermions, Nucl. Phys. B 259 (1985) 572 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    C. Morningstar and M.J. Peardon, Analytic smearing of SU(3) link variables in lattice QCD, Phys. Rev. D 69 (2004) 054501 [hep-lat/0311018] [INSPIRE].ADSGoogle Scholar
  26. [26]
    R. Hoffmann, A. Hasenfratz and S. Schaefer, Non-perturbative improvement of nHYP smeared Wilson fermions, PoS(LATTICE 2007)104 [arXiv:0710.0471] [INSPIRE].
  27. [27]
    S. Capitani, S. Dürr and C. Hölbling, Rationale for UV-filtered clover fermions, JHEP 11 (2006) 028 [hep-lat/0607006] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    S. Duane, A. Kennedy, B. Pendleton and D. Roweth, Hybrid Monte Carlo, Phys. Lett. B 195 (1987) 216 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M. Clark and A. Kennedy, Accelerating dynamical fermion computations using the rational hybrid Monte Carlo (RHMC) algorithm with multiple pseudofermion fields, Phys. Rev. Lett. 98 (2007) 051601 [hep-lat/0608015] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J. Sexton and D. Weingarten, Hamiltonian evolution for the hybrid Monte Carlo algorithm, Nucl. Phys. B 380 (1992) 665 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    T. Takaishi and P. de Forcrand, Testing and tuning new symplectic integrators for hybrid Monte Carlo algorithm in lattice QCD, Phys. Rev. E 73 (2006) 036706 [hep-lat/0505020] [INSPIRE].ADSGoogle Scholar
  32. [32]
    T.A. DeGrand, A conditioning technique for matrix inversion for Wilson fermions, Comput. Phys. Commun. 52 (1988) 161 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    Wuppertal-Budapest collaboration, S. Borsányi et al., Is there still any T c mystery in lattice QCD? Results with physical masses in the continuum limit III, JHEP 09 (2010) 073 [arXiv:1005.3508] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    S. Borsányi et al., The QCD equation of state with dynamical quarks, JHEP 11 (2010) 077 [arXiv:1007.2580] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    S. Borsányi et al., High-precision scale setting in lattice QCD, arXiv:1203.4469 [INSPIRE].
  36. [36]
    L. Giusti, F. Rapuano, M. Talevi and A. Vladikas, The QCD chiral condensate from the lattice, Nucl. Phys. B 538 (1999) 249 [hep-lat/9807014] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M. Bochicchio, L. Maiani, G. Martinelli, G.C. Rossi and M. Testa, Chiral symmetry on the lattice with Wilson fermions, Nucl. Phys. B 262 (1985) 331 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    S. Borsányi et al., QCD thermodynamics with Wilson fermions, PoS(LATTICE 2011)209 [arXiv:1111.3500] [INSPIRE].
  39. [39]
    S. Dürr et al., Lattice QCD at the physical point: light quark masses, Phys. Lett. B 701 (2011) 265 [arXiv:1011.2403] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    S. Dürr et al., Lattice QCD at the physical point: simulation and analysis details, JHEP 08 (2011) 148 [arXiv:1011.2711] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    QCDSF-UKQCD collaboration, T. Bakeyev et al., Nonperturbative renormalization and improvement of the local vector current for quenched and unquenched Wilson fermions, Phys. Lett. B 580 (2004) 197 [hep-lat/0305014] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    T. Bhattacharya, R. Gupta, W. Lee, S.R. Sharpe and J.M. Wu, Improved bilinears in lattice QCD with non-degenerate quarks, Phys. Rev. D 73 (2006) 034504 [hep-lat/0511014] [INSPIRE].ADSGoogle Scholar
  43. [43]
    G. Martinelli, C. Pittori, C.T. Sachrajda, M. Testa and A. Vladikas, A general method for nonperturbative renormalization of lattice operators, Nucl. Phys. B 445 (1995) 81 [hep-lat/9411010] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    V. Maillart and F. Niedermayer, A specific lattice artefact in non-perturbative renormalization of operators, arXiv:0807.0030 [INSPIRE].
  45. [45]
    S. Borsányi et al., QCD thermodynamics with dynamical overlap fermions, Phys. Lett. B 713 (2012) 342 [arXiv:1204.4089] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    G.I. Egri et al., Lattice QCD as a video game, Comput. Phys. Commun. 177 (2007) 631 [hep-lat/0611022] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Szabolcs Borsányi
    • 1
  • Stephan Dürr
    • 1
    • 2
  • Zoltán Fodor
    • 1
    • 2
    • 3
  • Christian Hoelbling
    • 1
  • Sándor D. Katz
    • 3
  • Stefan Krieg
    • 1
    • 2
  • Dániel Nógrádi
    • 3
  • Kálmán K. Szabó
    • 1
  • Bálint C. Tóth
    • 1
  • Norbert Trombitás
    • 3
  1. 1.University of Wuppertal, Department of PhysicsWuppertalGermany
  2. 2.Jülich Supercomputing Center, Forschungszentrum JülichJülichGermany
  3. 3.Eötvös University, Institute for Theoretical PhysicsBudapestHungary

Personalised recommendations