The μe conversion in nuclei, μ, μ → 3e decays and TeV scale see-saw scenarios of neutrino mass generation

  • D. N. Dinh
  • A. Ibarra
  • E. MolinaroEmail author
  • S. T. Petcov


We perform a detailed analysis of lepton flavour violation (LFV) within minimal see-saw type extensions of the Standard Model (SM), which give a viable mechanism of neutrino mass generation and provide new particle content at the electroweak scale. We focus, mainly, on predictions and constraints set on each scenario from μeγ, μ → 3e and μe conversion in the nuclei. In this class of models, the flavour structure of the Yukawa couplings between the additional scalar and fermion representations and the SM leptons is highly constrained by neutrino oscillation measurements. In particular, we show that in some regions of the parameters space of type I and type II see-saw models, the Dirac and Majorana phases of the neutrino mixing matrix, the ordering and hierarchy of the active neutrino mass spectrum as well as the value of the reactor mixing angle θ 13 may considerably affect the size of the LFV observables. The interplay of the latter clearly allows to discriminate among the different low energy see-saw possibilities.


Rare Decays Neutrino Physics Beyond Standard Model 


  1. [1]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSGoogle Scholar
  2. [2]
    Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    SNO collaboration, Q. Ahmad et al., Measurement of the rate of ν e + dp + p + e interactions produced by 8 B solar neutrinos at the Sudbury Neutrino Observatory, Phys. Rev. Lett. 87 (2001) 071301 [nucl-ex/0106015] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    Super-Kamiokande collaboration, S. Fukuda et al., Solar 8 B and hep neutrino measurements from 1258 days of Super-Kamiokande data, Phys. Rev. Lett. 86 (2001) 5651 [hep-ex/0103032] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    KamLAND collaboration, K. Eguchi et al., First results from KamLAND: evidence for reactor anti-neutrino disappearance, Phys. Rev. Lett. 90 (2003) 021802 [hep-ex/0212021] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    T2K collaboration, K. Abe et al., Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    MINOS collaboration, P. Adamson et al., Improved search for muon-neutrino to electron-neutrino oscillations in MINOS, Phys. Rev. Lett. 107 (2011) 181802 [arXiv:1108.0015] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    MINOS collaboration, P. Adamson et al., Search for the disappearance of muon antineutrinos in the NuMI neutrino beam, Phys. Rev. D 84 (2011) 071103 [arXiv:1108.1509] [INSPIRE].ADSGoogle Scholar
  9. [9]
    DOUBLE-CHOOZ collaboration, Y. Abe et al., Indication for the disappearance of reactor electron antineutrinos in the Double CHOOZ experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    G.L. Fogli et al., Evidence of θ 13> 0 from global neutrino data analysis, Phys. Rev. D 84 (2011) 053007 [arXiv:1106.6028] [INSPIRE].ADSGoogle Scholar
  11. [11]
    T. Schwetz, M. Tórtola and J. Valle, Where we are on θ 13 : addendum toGlobal neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters’, New J. Phys. 13 (2011) 109401 [arXiv:1108.1376] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    DAYA-BAY collaboration, F. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    RENO collaboration, J. Ahn et al., Observation of reactor electron antineutrino disappearance in the RENO experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    K. Schreckenbach, G. Colvin, W. Gelletly and F. Von Feilitzsch, Determination of the anti-neutrino spectrum from 235 U thermal neutron fission products up to 9.5 MeV, Phys. Lett. B 160 (1985) 325 [INSPIRE].ADSGoogle Scholar
  15. [15]
    A.K. Alok, A. Dighe and D. London, Constraints on the four-generation quark mixing matrix from a fit to flavor-physics data, Phys. Rev. D 83 (2011) 073008 [arXiv:1011.2634] [INSPIRE].ADSGoogle Scholar
  16. [16]
    J. Bernabéu, S. Palomares Ruiz and S. Petcov, Atmospheric neutrino oscillations, θ 13 and neutrino mass hierarchy, Nucl. Phys. B 669 (2003) 255 [hep-ph/0305152] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S. Palomares-Ruiz and S. Petcov, Three-neutrino oscillations of atmospheric neutrinos, θ 13 , neutrino mass hierarchy and iron magnetized detectors, Nucl. Phys. B 712 (2005) 392 [hep-ph/0406096] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S.T. Petcov and T. Schwetz, Determining the neutrino mass hierarchy with atmospheric neutrinos, Nucl. Phys. B 740 (2006) 1 [hep-ph/0511277] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    R. Gandhi et al., Mass hierarchy determination via future atmospheric neutrino detectors, Phys. Rev. D 76 (2007) 073012 [arXiv:0707.1723] [INSPIRE].ADSGoogle Scholar
  20. [20]
    S. Petcov and M. Piai, The LMA MSW solution of the solar neutrino problem, inverted neutrino mass hierarchy and reactor neutrino experiments, Phys. Lett. B 533 (2002) 94 [hep-ph/0112074] [INSPIRE].ADSGoogle Scholar
  21. [21]
    S. Choubey, S. Petcov and M. Piai, Precision neutrino oscillation physics with an intermediate baseline reactor neutrino experiment, Phys. Rev. D 68 (2003) 113006 [hep-ph/0306017] [INSPIRE].ADSGoogle Scholar
  22. [22]
    P. Ghoshal and S. Petcov, Neutrino mass hierarchy determination using reactor antineutrinos, JHEP 03 (2011) 058 [arXiv:1011.1646] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S. Pascoli and S. Petcov, Majorana neutrinos, neutrino mass spectrum and the \( \left| {\left\langle m \right\rangle } \right| \sim {10^{{ - 3}}} \) eV frontier in neutrinoless double beta decay, Phys. Rev. D 77 (2008) 113003 [arXiv:0711.4993] [INSPIRE].ADSGoogle Scholar
  24. [24]
    S. Pascoli, S. Petcov and A. Riotto, Connecting low energy leptonic CP-violation to leptogenesis, Phys. Rev. D 75 (2007) 083511 [hep-ph/0609125] [INSPIRE].ADSGoogle Scholar
  25. [25]
    S. Pascoli, S. Petcov and A. Riotto, Leptogenesis and low energy CP-violation in neutrino physics, Nucl. Phys. B 774 (2007) 1 [hep-ph/0611338] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    E. Molinaro and S. Petcov, A case of subdominant/suppressedhigh energycontribution to the baryon asymmetry of the universe in flavoured leptogenesis, Phys. Lett. B 671 (2009) 60 [arXiv:0808.3534] [INSPIRE].ADSGoogle Scholar
  27. [27]
    MEG collaboration, J. Adam et al., New limit on the lepton-flavour violating decay μ +e + γ, Phys. Rev. Lett. 107 (2011) 171801 [arXiv:1107.5547] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    SINDRUM collaboration, U. Bellgardt et al., Search for the decay μ +e + e + e , Nucl. Phys. B 299 (1988) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    SINDRUM II collaboration, C. Dohmen et al., Test of lepton flavor conservation in μe conversion on titanium, Phys. Lett. B 317 (1993) 631 [INSPIRE].ADSGoogle Scholar
  30. [30]
    BABAR collaboration, B. Aubert et al., Searches for lepton flavor violation in the decays τ ±e ± γ and τ ±μ ± γ, Phys. Rev. Lett. 104 (2010) 021802 [arXiv:0908.2381] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M. Raidal, A. Strumia and K. Turzynski, Low-scale standard supersymmetric leptogenesis, Phys. Lett. B 609 (2005) 351 [Erratum ibid. B 632 (2006) 752] [hep-ph/0408015] [INSPIRE].ADSGoogle Scholar
  32. [32]
    M. Shaposhnikov, A possible symmetry of the νMSM, Nucl. Phys. B 763 (2007) 49 [hep-ph/0605047] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    J. Kersten and A.Y. Smirnov, Right-handed neutrinos at CERN LHC and the mechanism of neutrino mass generation, Phys. Rev. D 76 (2007) 073005 [arXiv:0705.3221] [INSPIRE].ADSGoogle Scholar
  34. [34]
    M. Gavela, T. Hambye, D. Hernandez and P. Hernández, Minimal flavour seesaw models, JHEP 09 (2009) 038 [arXiv:0906.1461] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A. Ibarra, E. Molinaro and S. Petcov, Low energy signatures of the TeV scale see-saw mechanism, Phys. Rev. D 84 (2011) 013005 [arXiv:1103.6217] [INSPIRE].ADSGoogle Scholar
  36. [36]
    R. Akhmetshin et al., Letter of Intent for phase-I of the COMET experiment at J-PARC,, Japan March 11 2012.
  37. [37]
    Mu2e: muon-to-electron-conversion experiment webpage,
  38. [38]
    PRIME Working Group collaboration, Y. Mori et al., An experimental search for μ e conversion process at an ultimate sensitivity of the order of 10−18 with PRISM, LOI-25, Letters of Intent for Nuclear and Particle Physics Experiments at the J-PARC, KEK, Tsukuba Japan (2003).Google Scholar
  39. [39]
    Project X: a proposed proton accelerator complex at Fermilab webpage,
  40. [40]
    Y. Kuno, private communication.Google Scholar
  41. [41]
    SuperKEKB Physics Working Group collaboration, A. Akeroyd et al., Physics at super B factory, hep-ex/0406071 [INSPIRE].
  42. [42]
    SuperB collaboration, M. Bona et al., SuperB: a high-luminosity asymmetric e + e super flavor factory. Conceptual design report,, INFN, Pisa Italy (2007), pg. 453 [arXiv:0709.0451] [INSPIRE].
  43. [43]
    P. Minkowski, μeγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].ADSGoogle Scholar
  44. [44]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Proceedings of the Supergravity Stony Brook Workshop, P. Van Nieuwenhuizen and D. Freedman eds., New York U.S.A. (1979) [INSPIRE].
  45. [45]
    T. Yanagida, Horizontal symmetry and masses of neutrinos, in Proceedinds of the Workshop on Unified Theories and Baryon Number in the Universe, A. Sawada and A. Sugamoto eds., Tsukuba Japan (1979) [INSPIRE].
  46. [46]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    A. Ibarra, E. Molinaro and S. Petcov, TeV scale see-saw mechanisms of neutrino mass generation, the Majorana nature of the heavy singlet neutrinos and (ββ)0ν -decay, JHEP 09 (2010) 108 [arXiv:1007.2378] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    B. Pontecorvo, Mesonium and anti-mesonium, Zh. Eksp. Teor. Fiz. 33 (1957) 549 [Sov. Phys. JETP 6 (1957) 429] [INSPIRE].Google Scholar
  49. [49]
    B. Pontecorvo, Inverse β-processes and lepton charge nonconservation, Zh. Eksp. Teor. Fiz. 34 (1958) 247 [Sov. Phys. JETP 7 (1958) 172] [INSPIRE].Google Scholar
  50. [50]
    B. Pontecorvo, Neutrino experiments and the problem of conservation of leptonic charge, Zh. Eksp. Teor. Fiz. 53 (1967) 1717 [Sov. Phys. JETP 26 (1968) 984] [INSPIRE].Google Scholar
  51. [51]
    Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  52. [52]
    S. Antusch, J.P. Baumann and E. Fernandez-Martinez, Non-standard neutrino interactions with matter from physics beyond the Standard Model, Nucl. Phys. B 810 (2009) 369 [arXiv:0807.1003] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    S. Antusch, C. Biggio, E. Fernandez-Martinez, M. Gavela and J. Lopez-Pavon, Unitarity of the leptonic mixing matrix, JHEP 10 (2006) 084 [hep-ph/0607020] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    A. Merle and W. Rodejohann, The elements of the neutrino mass matrix: allowed ranges and implications of texture zeros, Phys. Rev. D 73 (2006) 073012 [hep-ph/0603111] [INSPIRE].ADSGoogle Scholar
  55. [55]
    A. Kleppe, Extending the Standard Model with two right-handed neutrinos, in Neutrino physics, Lohusalu Estonia (1995), pg. 118 [INSPIRE]
  56. [56]
    E. Ma, D. Roy and U. Sarkar, A seesaw model for atmospheric and solar neutrino oscillations, Phys. Lett. B 444 (1998) 391 [hep-ph/9810309] [INSPIRE].ADSGoogle Scholar
  57. [57]
    P. Frampton, S. Glashow and T. Yanagida, Cosmological sign of neutrino CP-violation, Phys. Lett. B 548 (2002) 119 [hep-ph/0208157] [INSPIRE].ADSGoogle Scholar
  58. [58]
    M. Raidal and A. Strumia, Predictions of the most minimal seesaw model, Phys. Lett. B 553 (2003) 72 [hep-ph/0210021] [INSPIRE].ADSGoogle Scholar
  59. [59]
    V. Barger, D.A. Dicus, H.-J. He and T.-J. Li, Structure of cosmological CP-violation via neutrino seesaw, Phys. Lett. B 583 (2004) 173 [hep-ph/0310278] [INSPIRE].ADSGoogle Scholar
  60. [60]
    T. Endoh, S. Kaneko, S. Kang, T. Morozumi and M. Tanimoto, CP violation in neutrino oscillation and leptogenesis, Phys. Rev. Lett. 89 (2002) 231601 [hep-ph/0209020] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    A. Ibarra and G.G. Ross, Neutrino phenomenology: the case of two right-handed neutrinos, Phys. Lett. B 591 (2004) 285 [hep-ph/0312138] [INSPIRE].ADSGoogle Scholar
  62. [62]
    A. Ibarra and G.G. Ross, Neutrino properties from Yukawa structure, Phys. Lett. B 575 (2003) 279 [hep-ph/0307051] [INSPIRE].ADSGoogle Scholar
  63. [63]
    S. Petcov, W. Rodejohann, T. Shindou and Y. Takanishi, The see-saw mechanism, neutrino Yukawa couplings, LFV decays ℓ i j + γ and leptogenesis, Nucl. Phys. B 739 (2006) 208 [hep-ph/0510404] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    L. Wolfenstein, Different varieties of massive Dirac neutrinos, Nucl. Phys. B 186 (1981) 147 [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    S. Petcov, On pseudoDirac neutrinos, neutrino oscillations and neutrinoless double beta decay, Phys. Lett. B 110 (1982) 245 [INSPIRE].ADSGoogle Scholar
  66. [66]
    C.N. Leung and S. Petcov, A comment on the coexistence of Dirac and Majorana massive neutrinos, Phys. Lett. B 125 (1983) 461 [INSPIRE].ADSGoogle Scholar
  67. [67]
    R. Mohapatra and J. Valle, Neutrino mass and baryon number nonconservation in superstring models, Phys. Rev. D 34 (1986) 1642 [INSPIRE].ADSGoogle Scholar
  68. [68]
    D. Wyler and L. Wolfenstein, Massless neutrinos in left-right symmetric models, Nucl. Phys. B 218 (1983) 205 [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    S.M. Bilenky, J. Hosek and S. Petcov, On oscillations of neutrinos with Dirac and Majorana masses, Phys. Lett. B 94 (1980) 495 [INSPIRE].ADSGoogle Scholar
  70. [70]
    MEGA collaboration, M. Brooks et al., New limit for the family number nonconserving decay μ +e + γ, Phys. Rev. Lett. 83 (1999) 1521 [hep-ex/9905013] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    S. Petcov, The processes μeγ, μeee, ν νγ in the Weinberg-Salam model with neutrino mixing, Sov. J. Nucl. Phys. 25 (1977) 340 [Yad. Fiz. 25 (1977) 641] [Erratum ibid. 25 (1977)698] [Erratum ibid. 25 (1977) 1336] [INSPIRE].Google Scholar
  72. [72]
    S.M. Bilenky, S. Petcov and B. Pontecorvo, Lepton mixing, μe + γ decay and neutrino oscillations, Phys. Lett. B 67 (1977) 309 [INSPIRE].ADSGoogle Scholar
  73. [73]
    T. Cheng and L.-F. Li, μeγ in theories with Dirac and Majorana neutrino mass terms, Phys. Rev. Lett. 45 (1980) 1908 [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    J. Hisano, T. Moroi, K. Tobe and M. Yamaguchi, Lepton flavor violation via right-handed neutrino Yukawa couplings in supersymmetric Standard Model, Phys. Rev. D 53 (1996) 2442 [hep-ph/9510309] [INSPIRE].ADSGoogle Scholar
  75. [75]
    A.J. Buras, B. Duling, T. Feldmann, T. Heidsieck and C. Promberger, Lepton flavour violation in the presence of a fourth generation of quarks and leptons, JHEP 09 (2010) 104 [arXiv:1006.5356] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    J. Hisano and K. Tobe, Neutrino masses, muon g-2 and lepton flavor violation in the supersymmetric seesaw model, Phys. Lett. B 510 (2001) 197 [hep-ph/0102315] [INSPIRE].ADSGoogle Scholar
  77. [77]
    M. Magg and C. Wetterich, Neutrino mass problem and gauge hierarchy, Phys. Lett. B 94 (1980) 61 [INSPIRE].ADSGoogle Scholar
  78. [78]
    J. Schechter and J. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].ADSGoogle Scholar
  79. [79]
    R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].ADSGoogle Scholar
  80. [80]
    M. Kakizaki, Y. Ogura and F. Shima, Lepton flavor violation in the triplet Higgs model, Phys. Lett. B 566 (2003) 210 [hep-ph/0304254] [INSPIRE].ADSGoogle Scholar
  81. [81]
    A. Akeroyd, M. Aoki and H. Sugiyama, Lepton flavour violating decays \( \tau \to \bar{\ell }\ell \) and μeγ in the Higgs triplet model, Phys. Rev. D 79 (2009) 113010 [arXiv:0904.3640] [INSPIRE].ADSGoogle Scholar
  82. [82]
    T. Han and B. Zhang, Signatures for Majorana neutrinos at hadron colliders, Phys. Rev. Lett. 97 (2006) 171804 [hep-ph/0604064] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    F. del Aguila, J. Aguilar-Saavedra and R. Pittau, Heavy neutrino signals at large hadron colliders, JHEP 10 (2007) 047 [hep-ph/0703261] [INSPIRE].CrossRefGoogle Scholar
  84. [84]
    A. Atre, T. Han, S. Pascoli and B. Zhang, The search for heavy Majorana neutrinos, JHEP 05 (2009) 030 [arXiv:0901.3589] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    F. del Aguila and J. Aguilar-Saavedra, Distinguishing seesaw models at LHC with multi-lepton signals, Nucl. Phys. B 813 (2009) 22 [arXiv:0808.2468] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    A. Akeroyd, S. Moretti and H. Sugiyama, Five-lepton and six-lepton signatures from production of neutral triplet scalars in the Higgs triplet model, Phys. Rev. D 85 (2012) 055026 [arXiv:1201.5047] [INSPIRE].ADSGoogle Scholar
  87. [87]
    E.J. Chun, K.Y. Lee and S.C. Park, Testing Higgs triplet model and neutrino mass patterns, Phys. Lett. B 566 (2003) 142 [hep-ph/0304069] [INSPIRE].ADSGoogle Scholar
  88. [88]
    M.-C. Chen, Generation of small neutrino Majorana masses in a Randall-Sundrum model, Phys. Rev. D 71 (2005) 113010 [hep-ph/0504158] [INSPIRE].ADSGoogle Scholar
  89. [89]
    E. Ma, M. Raidal and U. Sarkar, Verifiable model of neutrino masses from large extra dimensions, Phys. Rev. Lett. 85 (2000) 3769 [hep-ph/0006046] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    E. Ma, M. Raidal and U. Sarkar, Phenomenology of the neutrino mass giving Higgs triplet and the low-energy seesaw violation of lepton number, Nucl. Phys. B 615 (2001) 313 [hep-ph/0012101] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    A. Akeroyd and C.-W. Chiang, Phenomenology of large mixing for the CP-even neutral scalars of the Higgs triplet model, Phys. Rev. D 81 (2010) 115007 [arXiv:1003.3724] [INSPIRE].ADSGoogle Scholar
  92. [92]
    J. Bernabeu, A. Pich and A. Santamaria, CP phases in the charged current and Higgs sectors for Majorana neutrinos, Z. Phys. C 30 (1986) 213 [INSPIRE].ADSGoogle Scholar
  93. [93]
    G. Leontaris, K. Tamvakis and J. Vergados, Lepton and family number violation from exotic scalars, Phys. Lett. B 162 (1985) 153 [INSPIRE].ADSGoogle Scholar
  94. [94]
    M. Raidal and A. Santamaria, Muon electron conversion in nuclei versus μeγ: an effective field theory point of view, Phys. Lett. B 421 (1998) 250 [hep-ph/9710389] [INSPIRE].ADSGoogle Scholar
  95. [95]
    E. Ma, M. Raidal and U. Sarkar, Phenomenology of the neutrino mass giving Higgs triplet and the low-energy seesaw violation of lepton number, Nucl. Phys. B 615 (2001) 313 [hep-ph/0012101] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    S. Petcov, Remarks on the Zee model of neutrino mixing (μeγ, heavy neutrinolight neutrino γ, etc.), Phys. Lett. B 115 (1982) 401 [INSPIRE].ADSGoogle Scholar
  97. [97]
    J. Chakrabortty, P. Ghosh and W. Rodejohann, Lower limits on μeγ from new measurements on U e3, arXiv:1204.1000 [INSPIRE].
  98. [98]
    S.M. Bilenky and S. Petcov, Massive neutrinos and neutrino oscillations, Rev. Mod. Phys. 59 (1987) 671 [Erratum ibid. 60 (1988) 575] [Erratum ibid. 61 (1989) 169] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    S.M. Bilenky, S. Pascoli and S. Petcov, Majorana neutrinos, neutrino mass spectrum, CP-violation and neutrinoless double beta decay. 1. The three neutrino mixing case, Phys. Rev. D 64 (2001) 053010 [hep-ph/0102265] [INSPIRE].ADSGoogle Scholar
  100. [100]
    S.T. Petcov, Theoretical prospects of neutrinoless double beta decay, Phys. Scripta T 121 (2005) 94 [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    S. Petcov, Neutrino mixing, leptonic CP-violation, the seesaw mechanism and beyond, Int. J. Mod. Phys. A 25 (2010) 4325 [INSPIRE].ADSGoogle Scholar
  102. [102]
    S. Petcov, H. Sugiyama and Y. Takanishi, Neutrinoless double beta decay and H ±± ′± ± decays in the Higgs triplet model, Phys. Rev. D 80 (2009) 015005 [arXiv:0904.0759] [INSPIRE].ADSGoogle Scholar
  103. [103]
    H. Klapdor-Kleingrothaus, I. Krivosheina, A. Dietz and O. Chkvorets, Search for neutrinoless double beta decay with enriched 76 Ge in Gran Sasso 1990–2003, Phys. Lett. B 586 (2004) 198 [hep-ph/0404088] [INSPIRE].ADSGoogle Scholar
  104. [104]
    H. Klapdor-Kleingrothaus, A. Dietz, H. Harney and I. Krivosheina, Evidence for neutrinoless double beta decay, Mod. Phys. Lett. A 16 (2001) 2409 [hep-ph/0201231] [INSPIRE].ADSGoogle Scholar
  105. [105]
    W. Rodejohann, Neutrino-less double beta decay and particle physics, Int. J. Mod. Phys. E 20 (2011) 1833 [arXiv:1106.1334] [INSPIRE].ADSGoogle Scholar
  106. [106]
    S. Pascoli and S. Petcov, The SNO solar neutrino data, neutrinoless double beta decay and neutrino mass spectrum, Phys. Lett. B 544 (2002) 239 [hep-ph/0205022] [INSPIRE].ADSGoogle Scholar
  107. [107]
    S. Pascoli and S. Petcov, The SNO solar neutrino data, neutrinoless double beta decay and neutrino mass spectrum: addendum, Phys. Lett. B 580 (2004) 280 [hep-ph/0310003] [INSPIRE].ADSGoogle Scholar
  108. [108]
    R. Kitano, M. Koike and Y. Okada, Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei, Phys. Rev. D 66 (2002) 096002 [Erratum ibid. D 76 (2007) 059902] [hep-ph/0203110] [INSPIRE].ADSGoogle Scholar
  109. [109]
    R. Foot, H. Lew, X. He and G.C. Joshi, Seesaw neutrino masses induced by a triplet of leptons, Z. Phys. C 44 (1989) 441 [INSPIRE].Google Scholar
  110. [110]
    E. Ma, Pathways to naturally small neutrino masses, Phys. Rev. Lett. 81 (1998) 1171 [hep-ph/9805219] [INSPIRE].ADSCrossRefGoogle Scholar
  111. [111]
    A. Abada, C. Biggio, F. Bonnet, M. Gavela and T. Hambye, Low energy effects of neutrino masses, JHEP 12 (2007) 061 [arXiv:0707.4058] [INSPIRE].ADSCrossRefGoogle Scholar
  112. [112]
    A. Abada, C. Biggio, F. Bonnet, M. Gavela and T. Hambye, μ → eγ and τ → ℓγ decays in the fermion triplet seesaw model, Phys. Rev. D 78 (2008) 033007 [arXiv:0803.0481] [INSPIRE].ADSGoogle Scholar
  113. [113]
    J. Bernabeu, E. Nardi and D. Tommasini, μe conversion in nuclei and Z physics, Nucl. Phys. B 409 (1993) 69 [hep-ph/9306251] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • D. N. Dinh
    • 1
    • 2
  • A. Ibarra
    • 3
  • E. Molinaro
    • 4
    Email author
  • S. T. Petcov
    • 1
    • 5
    • 6
  1. 1.SISSA and INFN-Sezione di TriesteTriesteItaly
  2. 2.Institute of PhysicsHanoiVietnam
  3. 3.Physik-Department T30dTechnische Universität MünchenGarchingGermany
  4. 4.Centro de F ısica Teórica de Partículas, Instituto Superior TécnicoTechnical University of LisbonLisboaPortugal
  5. 5.Kavli IPMU, University of TokyoKashiwaJapan
  6. 6.Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations