Discerning new physics in \( t\overline t \) production using top spin observables at hadron colliders

  • Svjetlana Fajfer
  • Jernej F. Kamenik
  • Blaženka Melić
Article

Abstract

Copious production of top-anti top quark pairs at hadron colliders has enabled various probes into the properties and interactions of top quarks. Among the various presently measured observables, the forward-backward asymmetry (FBA) in \( t\overline t \) production measured at the Tevatron significantly deviates from the standard model predictions, and many models of new physics have been invented to explain the puzzle. We consider the consistency of the simplified single-resonance models containing a color octet axial-vector (“axigluon”), color triplet or sextet weak singlet scalars, weak isodoublet scalar, flavor-changing neutral Z, or charged W vector boson with existing \( t\overline t \) production measurements. Among the considered models only an axigluon can reproduce all Tevatron observables, without being in severe tension with the recent LHC results on \( t\overline t \) production cross section, charge asymmetry and top-spin correlations. The LHC charge asymmetry measurements exclude the W and Z explanations of the Tevatron FBA anomaly. On the other hand, all scalar models predict notable deviations in several top spin observables, and the recent top spin correlation measurement using the “helicity” spin quantization axis by ATLAS already provides a significant constraint on possible explanations of the Tevatron FBA anomaly. Future precise measurements of top spin correlations and especially top polarization could differentiate between scalar t-channel models, while they are less sensitive to pure axigluon contributions.

Keywords

Beyond Standard Model Heavy Quark Physics 

References

  1. [1]
    J.F. Kamenik, J. Shu and J. Zupan, Review of new physics effects in \( t\overline t \) production, arXiv:1107.5257 [INSPIRE].
  2. [2]
    J.H. Kuhn, How to measure the polarization of top quarks, Nucl. Phys. B 237 (1984) 77 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    T. Stelzer and S. Willenbrock, Spin correlation in top quark production at hadron colliders, Phys. Lett. B 374 (1996) 169 [hep-ph/9512292] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    D. Krohn, T. Liu, J. Shelton and L.-T. Wang, A polarized view of the top asymmetry, Phys. Rev. D 84 (2011) 074034 [arXiv:1105.3743] [INSPIRE].ADSGoogle Scholar
  5. [5]
    C. Degrande, J.-M. Gerard, C. Grojean, F. Maltoni and G. Servant, Non-resonant new physics in top pair production at hadron colliders, JHEP 03 (2011) 125 [arXiv:1010.6304] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    R.M. Godbole, K. Rao, S.D. Rindani and R.K. Singh, On measurement of top polarization as a probe of \( t\overline t \) production mechanisms at the LHC, JHEP 11 (2010) 144 [arXiv:1010.1458] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J. Cao, L. Wu and J.M. Yang, New physics effects on top quark spin correlation and polarization at the LHC: a comparative study in different models, Phys. Rev. D 83 (2011) 034024 [arXiv:1011.5564] [INSPIRE].ADSGoogle Scholar
  8. [8]
    D.-W. Jung, P. Ko and J.S. Lee, Longitudinal top polarization as a probe of a possible origin of forward-backward asymmetry of the top quark at the Tevatron, Phys. Lett. B 701 (2011) 248 [arXiv:1011.5976] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    D. Choudhury, R.M. Godbole, S.D. Rindani and P. Saha, Top polarization, forward-backward asymmetry and new physics, Phys. Rev. D 84 (2011) 014023 [arXiv:1012.4750] [INSPIRE].ADSGoogle Scholar
  10. [10]
    J. Cao, K. Hikasa, L. Wang, L. Wu and J.M. Yang, Testing new physics models by top charge asymmetry and polarization at the LHC, Phys. Rev. D 85 (2012) 014025 [arXiv:1109.6543] [INSPIRE].ADSGoogle Scholar
  11. [11]
    Y. Bai and Z. Han, Improving the top quark forward-backward asymmetry measurement at the LHC, JHEP 02 (2012) 135 [arXiv:1106.5071] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A. Falkowski, G. Perez and M. Schmaltz, Spinning the top, arXiv:1110.3796 [INSPIRE].
  13. [13]
    E.L. Berger, Q.-H. Cao, C.-R. Chen, J.-H. Yu and H. Zhang, The top quark production asymmetries A FB and A FB, Phys. Rev. Lett. 108 (2012) 072002 [arXiv:1201.1790] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    J. Aguilar-Saavedra and M. Pérez-Victoria, Simple models for the top asymmetry: constraints and predictions, JHEP 09 (2011) 097 [arXiv:1107.0841] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    B. Grinstein, A.L. Kagan, M. Trott and J. Zupan, Forward-backward asymmetry in tt production from flavour symmetries, Phys. Rev. Lett. 107 (2011) 012002 [arXiv:1102.3374] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    B. Grinstein, A.L. Kagan, J. Zupan and M. Trott, Flavor symmetric sectors and collider physics, JHEP 10 (2011) 072 [arXiv:1108.4027] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J. Aguilar-Saavedra and M. Pérez-Victoria, Probing the Tevatron \( t\overline t \) asymmetry at LHC, JHEP 05 (2011) 034 [arXiv:1103.2765] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    J. Aguilar-Saavedra and M. Pérez-Victoria, Asymmetries in \( t\overline t \) production: LHC versus Tevatron, Phys. Rev. D 84 (2011) 115013 [arXiv:1105.4606] [INSPIRE].ADSGoogle Scholar
  19. [19]
    O. Antunano, J.H. Kuhn and G. Rodrigo, Top quarks, axigluons and charge asymmetries at hadron colliders, Phys. Rev. D 77 (2008) 014003 [arXiv:0709.1652] [INSPIRE].ADSGoogle Scholar
  20. [20]
    P. Ferrario and G. Rodrigo, Constraining heavy colored resonances from top-antitop quark events, Phys. Rev. D 80 (2009) 051701 [arXiv:0906.5541] [INSPIRE].ADSGoogle Scholar
  21. [21]
    P.H. Frampton, J. Shu and K. Wang, Axigluon as possible explanation for \( p\overline p \)\( t\overline t \) forward-backward asymmetry, Phys. Lett. B 683 (2010) 294 [arXiv:0911.2955] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    R. Barcelo, A. Carmona, M. Masip and J. Santiago, Gluon excitations in tt production at hadron colliders, Phys. Rev. D 84 (2011) 014024 [arXiv:1105.3333] [INSPIRE].ADSGoogle Scholar
  23. [23]
    R. Barcelo, A. Carmona, M. Masip and J. Santiago, Stealth gluons at hadron colliders, Phys. Lett. B 707 (2012) 88 [arXiv:1106.4054] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    G.M. Tavares and M. Schmaltz, Explaining the \( t\overline t \) asymmetry with a light axigluon, Phys. Rev. D 84 (2011) 054008 [arXiv:1107.0978] [INSPIRE].ADSGoogle Scholar
  25. [25]
    J.A. Aguilar-Saavedra and M. Pérez-Victoria, Shaping the top asymmetry, Phys. Lett. B 705 (2011)228 [arXiv:1107.2120] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    S. Jung, H. Murayama, A. Pierce and J.D. Wells, Top quark forward-backward asymmetry from new t-channel physics, Phys. Rev. D 81 (2010) 015004 [arXiv:0907.4112] [INSPIRE].ADSGoogle Scholar
  27. [27]
    K. Cheung, W.-Y. Keung and T.-C. Yuan, Top quark forward-backward asymmetry, Phys. Lett. B 682 (2009) 287 [arXiv:0908.2589] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    K. Blum, Y. Hochberg and Y. Nir, Scalar-mediated \( t\overline t \) forward-backward asymmetry, JHEP 10 (2011)124 [arXiv:1107.4350] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    J. Shu, T.M. Tait and K. Wang, Explorations of the top quark forward-backward asymmetry at the Tevatron, Phys. Rev. D 81 (2010) 034012 [arXiv:0911.3237] [INSPIRE].ADSGoogle Scholar
  30. [30]
    A. Arhrib, R. Benbrik and C.-H. Chen, Forward-backward asymmetry of top quark in diquark models, Phys. Rev. D 82 (2010) 034034 [arXiv:0911.4875] [INSPIRE].ADSGoogle Scholar
  31. [31]
    K.M. Patel and P. Sharma, Forward-backward asymmetry in top quark production from light colored scalars in SO(10) model, JHEP 04 (2011) 085 [arXiv:1102.4736] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    Z. Ligeti, G.M. Tavares and M. Schmaltz, Explaining the \( t\overline t \) forward-backward asymmetry without dijet or flavor anomalies, JHEP 06 (2011) 109 [arXiv:1103.2757] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    I. Dorsner, S. Fajfer, J.F. Kamenik and N. Kosnik, Light colored scalars from grand unification and the forward-backward asymmetry in tt production, Phys. Rev. D 81 (2010) 055009 [arXiv:0912.0972] [INSPIRE].ADSGoogle Scholar
  34. [34]
    CDF collaboration, T. Aaltonen et al., Evidence for a mass dependent forward-backward asymmetry in top quark pair production, Phys. Rev. D 83 (2011) 112003 [arXiv:1101.0034] [INSPIRE].ADSGoogle Scholar
  35. [35]
    CDF collaboration, Y. Takeuchi et al., Measurement of the forward backward asymmetry in top pair production in the dilepton decay channel using 5.1 fb −1, CDF-Note-10398, http://www-cdf.fnal.gov/physics/new/top/2011/DilAfb/, Fermilab, Batavia U.S.A. (2011).
  36. [36]
    CDF collaboration, T. Schwarz et al., Combination of the forward-backward asymmetry in the top pair production from L + J and DIL channels using 5 fb −1, CDF-Note-10584, Fermilab, Batavia U.S.A. (2011).Google Scholar
  37. [37]
    CDF collaboration, S. Leone, Top quark production at the Tevatron, talk given at Moriond EWK, La Thuile Italy March 9 2012.Google Scholar
  38. [38]
    DØ collaboration, V.M. Abazov et al., Forward-backward asymmetry in top quark-antiquark production, Phys. Rev. D 84 (2011) 112005 [arXiv:1107.4995] [INSPIRE].ADSGoogle Scholar
  39. [39]
    J.H. Kuhn and G. Rodrigo, Charge asymmetry in hadroproduction of heavy quarks, Phys. Rev. Lett. 81 (1998) 49 [hep-ph/9802268] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    J.H. Kuhn and G. Rodrigo, Charge asymmetry of heavy quarks at hadron colliders, Phys. Rev. D 59 (1999) 054017 [hep-ph/9807420] [INSPIRE].ADSGoogle Scholar
  41. [41]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    S. Frixione, P. Nason and B.R. Webber, Matching NLO QCD and parton showers in heavy flavor production, JHEP 08 (2003) 007 [hep-ph/0305252] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    N. Kidonakis, The top quark rapidity distribution and forward-backward asymmetry, Phys. Rev. D 84 (2011) 011504 [arXiv:1105.5167] [INSPIRE].ADSGoogle Scholar
  44. [44]
    V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, The top-pair forward-backward asymmetry beyond NLO, Phys. Rev. D 84 (2011) 074004 [arXiv:1106.6051] [INSPIRE].ADSGoogle Scholar
  45. [45]
    W. Hollik and D. Pagani, The electroweak contribution to the top quark forward-backward asymmetry at the Tevatron, Phys. Rev. D 84 (2011) 093003 [arXiv:1107.2606] [INSPIRE].ADSGoogle Scholar
  46. [46]
    J.H. Kuhn and G. Rodrigo, Charge asymmetries of top quarks at hadron colliders revisited, JHEP 01 (2012) 063 [arXiv:1109.6830] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    A.V. Manohar and M. Trott, Electroweak Sudakov corrections and the top quark forward-backward asymmetry, Phys. Lett. B 711 (2012) 313 [arXiv:1201.3926] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    ATLAS collaboration, Measurement of the charge asymmetry in top quark pair production in pp collisions at \( \sqrt {s} = 7\;TeV \) using the ATLAS detector, ATLAS-CONF-2011-106, CERN, Geneva Switzerland (2011).Google Scholar
  49. [49]
    ATLAS collaboration, G. Aad et al., Measurement of the charge asymmetry in top quark pair production in pp collisions at s = 7 TeV using the ATLAS detector, Eur. Phys. J. C 72 (2012) 2039 [arXiv:1203.4211] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    CMS collaboration, Differential measurements of the charge asymmetry in top quark pair production, CMS-PAS-TOP-11-030, CERN, Geneva Switzerland (2011).Google Scholar
  51. [51]
    ATLAS collaboration, A. Krasznahorkay, Top physics results from ATLAS, presented at ASPEN 2012 Winter Conference, Aspen U.S.A. February 12 2012.Google Scholar
  52. [52]
    CDF collaboration, T. Aaltonen et al., Combination of CDF top quark pair production cross section measurements with up to 4.6 fb −1, CDF-Note-9913, Fermilab, Batavia U.S.A. (2009).Google Scholar
  53. [53]
    P. Baernreuther, M. Czakon and A. Mitov, Percent level precision physics at the Tevatron: first genuine NNLO QCD corrections to \( q\overline q \to t\overline t + X \), arXiv:1204.5201 [INSPIRE].
  54. [54]
    CDF collaboration, T. Aaltonen et al., First measurement of the tt differential cross section dσ/dM \( \left( {t\overline t } \right) \) in \( p\overline p \) collisions at \( \sqrt {s} = 1.96\;TeV \), Phys. Rev. Lett. 102 (2009) 222003 [arXiv:0903.2850] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Renormalization-group improved predictions for top-quark pair production at hadron colliders, JHEP 09 (2010) 097 [arXiv:1003.5827] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    ATLAS collaboration, Statistical combination of top quark pair production cross-section measurements using dilepton, single-lepton and all-hadronic final states at \( \sqrt {s} = 7\;TeV \) with the ATLAS detector, ATLAS-CONF-2012-024, CERN, Geneva Switzerland (2012).Google Scholar
  57. [57]
    CMS collaboration, Combination of top pair production cross section measurements, CMS-PAS-TOP-11-024, CERN, Geneva Switzerland (2011).Google Scholar
  58. [58]
    N. Kidonakis, Next-to-next-to-leading soft-gluon corrections for the top quark cross section and transverse momentum distribution, Phys. Rev. D 82 (2010) 114030 [arXiv:1009.4935] [INSPIRE].ADSGoogle Scholar
  59. [59]
    ATLAS collaboration, A search for \( t\overline t \) resonances in the dilepton channel in 1.04 fb −1 of pp collisions at \( \sqrt {s} = 7\;TeV \), ATLAS-CONF-2011-123, CERN, Geneva Switzerland (2011).Google Scholar
  60. [60]
    CMS collaboration, Search for heavy narrow resonances decaying to \( t\overline t \) in the muon + jets channel, CMS-PAS-EXO-11-055, CERN, Geneva Switzerland (2011).Google Scholar
  61. [61]
    CMS collaboration, S. Chatrchyan et al., Search for anomalous \( t\overline t \) production in the highly-boosted all-hadronic final state, arXiv:1204.2488 [INSPIRE].
  62. [62]
    J.F. Kamenik, M. Papucci and A. Weiler, Constraining the dipole moments of the top quark, Phys. Rev. D 85 (2012) 071501 [arXiv:1107.3143] [INSPIRE].ADSGoogle Scholar
  63. [63]
    DØ collaboration, V.M. Abazov et al., Measurement of spin correlation in \( t\overline t \) production using a matrix element approach, Phys. Rev. Lett. 107 (2011) 032001 [arXiv:1104.5194] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    DØ collaboration, V.M. Abazov et al., Measurement of spin correlation in \( t\overline t \) production using dilepton final states, Phys. Lett. B 702 (2011) 16 [arXiv:1103.1871] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    CDF collaboration, Measurement of \( t\overline t \) spin correlations coefficient in 5.1 fb −1 dilepton candidates, CDF-Note-10719, Fermilab, Batavia U.S.A. (2011).Google Scholar
  66. [66]
    CDF collaboration, Measurement of \( t\overline t \) helicity fractions and spin correlation using reconstructed lepton + jets events, CDF-Note-10211, Fermilab, Batavia U.S.A. (2011).Google Scholar
  67. [67]
    DØ collaboration, V.M. Abazov et al., Evidence for spin correlation in \( t\overline t \) production, Phys. Rev. Lett. 108 (2012) 032004 [arXiv:1110.4194] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    ATLAS collaboration, Measurement of spin correlation in \( t\overline t \) production from pp collisions at \( \sqrt {s} = 7\;TeV \) using the ATLAS detector,ATLAS-CONF-2011-117,CERN,Geneva Switzerland (2011).Google Scholar
  69. [69]
    ATLAS collaboration, G. Aad et al., Observation of spin correlation in tt events from pp collisions at s = 7 TeV using the ATLAS detector, Phys. Rev. Lett. 108 (2012) 212001 [arXiv:1203.4081] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    W. Bernreuther, A. Brandenburg, Z. Si and P. Uwer, Top quark pair production and decay at hadron colliders, Nucl. Phys. B 690 (2004) 81 [hep-ph/0403035] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    M.I. Gresham, I.-W. Kim, S. Tulin and K.M. Zurek, Confronting top A FB with parity violation constraints, arXiv:1203.1320 [INSPIRE].
  72. [72]
    A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    K. Yan, J. Wang, D.Y. Shao and C.S. Li, Next-to-leading order QCD effect of W on top quark forward-backward asymmetry, Phys. Rev. D 85 (2012) 034020 [arXiv:1110.6684] [INSPIRE].ADSGoogle Scholar
  74. [74]
    H.X. Zhu, C.S. Li, D.Y. Shao, J. Wang and C. Yuan, Precise QCD predictions on top quark pair production mediated by massive color octet vector boson at hadron colliders, arXiv:1201.0672 [INSPIRE].
  75. [75]
    M.I. Gresham, I.-W. Kim and K.M. Zurek, On models of new physics for the Tevatron top A FB, Phys. Rev. D 83 (2011) 114027 [arXiv:1103.3501] [INSPIRE].ADSGoogle Scholar
  76. [76]
    M.I. Gresham, I.-W. Kim and K.M. Zurek, Tevatron top A FB versus LHC top physics, Phys. Rev. D 85 (2012) 014022 [arXiv:1107.4364] [INSPIRE].ADSGoogle Scholar
  77. [77]
    CDF collaboration, T. Aaltonen et al., Observation of single top quark production and measurement of |V tb| with CDF, Phys. Rev. D 82 (2010) 112005 [arXiv:1004.1181] [INSPIRE].ADSGoogle Scholar
  78. [78]
    DØ collaboration, V.M. Abazov et al., Determination of the width of the top quark, Phys. Rev. Lett. 106 (2011) 022001 [arXiv:1009.5686] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    DØ collaboration, V.M. Abazov et al., An improved determination of the width of the top quark, Phys. Rev. D 85 (2012) 091104 [arXiv:1201.4156] [INSPIRE].ADSGoogle Scholar
  80. [80]
    CMS collaboration, S. Chatrchyan et al., Measurement of the t-channel single top quark production cross section in pp collisions at \( \sqrt {s} = 7\;TeV \), Phys. Rev. Lett. 107 (2011) 091802 [arXiv:1106.3052] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    ATLAS collaboration, Measurement of the t-channel single top-quark production cross section in 0.70 fb −1 of pp collisions at \( \sqrt {s} = 7\;TeV \) with the ATLAS detector, ATLAS-CONF-2011-101, CERN, Geneva Switzerland (2011).Google Scholar
  82. [82]
    T.A. Schwarz, Measurement of the front back asymmetry in top-antitop quark pairs produced in proton-antiproton collisions at center of mass energy = 1.96 TeV, FERMILAB-THESIS-2006-51, University of Michigan, Ann Arbor U.S.A. (2006) [INSPIRE].
  83. [83]
    D.D. Boline, Top quark mass in events with two charged leptons at the DØ experiment, Ph.D. thesis, Advisor U. Heintz, Boston university, Boston U.S.A. (2010) [INSPIRE].
  84. [84]
    Y. Bai, J.L. Hewett, J. Kaplan and T.G. Rizzo, LHC predictions from a Tevatron anomaly in the top quark forward-backward asymmetry, JHEP 03 (2011) 003 [arXiv:1101.5203] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    J. Drobnak, J.F. Kamenik and J. Zupan, Flipping tt asymmetries at the Tevatron and the LHC, arXiv:1205.4721 [INSPIRE].
  86. [86]
    B. Bhattacherjee, S.S. Biswal and D. Ghosh, Top quark forward-backward asymmetry at Tevatron and its implications at the LHC, Phys. Rev. D 83 (2011) 091501 [arXiv:1102.0545] [INSPIRE].ADSGoogle Scholar
  87. [87]
    A. Czarnecki, M. Jezabek and J.H. Kühn, Lepton spectra from decays of polarized top quarks, Nucl. Phys. B 351 (1991) 70 [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    A. Brandenburg, Z. Si and P. Uwer, QCD corrected spin analyzing power of jets in decays of polarized top quarks, Phys. Lett. B 539 (2002) 235 [hep-ph/0205023] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    S.J. Parke and Y. Shadmi, Spin correlations in top quark pair production at e + e colliders, Phys. Lett. B 387 (1996) 199 [hep-ph/9606419] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    G. Mahlon and S.J. Parke, Spin correlation effects in top quark pair production at the LHC, Phys. Rev. D 81 (2010) 074024 [arXiv:1001.3422] [INSPIRE].ADSGoogle Scholar
  91. [91]
    G. Mahlon and S.J. Parke, Maximizing spin correlations in top quark pair production at the Tevatron, Phys. Lett. B 411 (1997) 173 [hep-ph/9706304] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    P. Uwer, Maximizing the spin correlation of top quark pairs produced at the Large Hadron Collider, Phys. Lett. B 609 (2005) 271 [hep-ph/0412097] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    A.L. Kagan, J.F. Kamenik, G. Perez and S. Stone, Top LHCb physics, Phys. Rev. Lett. 107 (2011) 082003 [arXiv:1103.3747] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    J.-F. Arguin, M. Freytsis and Z. Ligeti, Comment on measuring the \( t\overline t \) forward-backward asymmetry at ATLAS and CMS, Phys. Rev. D 84 (2011) 071504 [arXiv:1107.4090] [INSPIRE].ADSGoogle Scholar
  95. [95]
    J. Bagger, C. Schmidt and S. King, Axigluon production in hadronic collisions, Phys. Rev. D 37 (1988)1188 [INSPIRE].ADSGoogle Scholar
  96. [96]
    J. Aguilar-Saavedra and M. Pérez-Victoria, No like-sign tops at Tevatron: constraints on extended models and implications for the tt asymmetry, Phys. Lett. B 701 (2011) 93 [arXiv:1104.1385] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Svjetlana Fajfer
    • 1
    • 2
  • Jernej F. Kamenik
    • 1
    • 2
  • Blaženka Melić
    • 3
  1. 1.Department of PhysicsUniversity of LjubljanaLjubljanaSlovenia
  2. 2.J. Stefan InstituteLjubljanaSlovenia
  3. 3.Rudjer Bošković Institute, Theoretical Physics DivisionZagrebCroatia

Personalised recommendations