Closing in on asymmetric dark matter I: model independent limits for interactions with quarks

  • John March-Russell
  • James Unwin
  • Stephen M. West


It is argued that experimental constraints on theories of asymmetric dark matter (ADM) almost certainly require that the DM be part of a richer hidden sector of interacting states of comparable mass or lighter. A general requisite of models of ADM is that the vast majority of the symmetric component of the DM number density must be removed in order to explain the observed relationship Ω B  ≈ 5Ω DM via the DM asymmetry. Demanding the efficient annihilation of the symmetric component leads to a tension with experimental limits if the annihilation is directly to Standard Model (SM) degrees of freedom. A comprehensive effective operator analysis of the model independent constraints on ADM from direct detection experiments and LHC monojet searches is presented. Notably, the limits obtained essentially exclude models of ADM with mass 1 GeV ≲ m DM ≲ 100 GeV annihilating to SM quarks via heavy mediator states. This motivates the study of portal interactions between the dark and SM sectors mediated by light states. Resonances and threshold effects involving the new light states are shown to be important for determining the exclusion limits.


Beyond Standard Model Cosmology of Theories beyond the SM 


  1. [1]
    Ya.B. Zel’dovich, Magnetic model of universe, Zh. Eksp. Teor. Fiz. 48 (1965) 986.Google Scholar
  2. [2]
    Ya.B. Zel’dovich, L.B. Okun and S.B. Pikelner, Quarks: the astrophysical and physical-chemistry aspects (translation), Usp. Fiz. Nauk. 84 (1965) 113.Google Scholar
  3. [3]
    H.-Y. Chiu, Symmetry between particle and anti-particle populations in the universe, Phys. Rev. Lett. 17 (1966) 712 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-In Production of FIMP Dark Matter, JHEP 03 (2010) 080 [arXiv:0911.1120] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S. Nussinov, Technocosmology: could a technibaryon excess provide anaturalmissing mass candidate?, Phys. Lett. B 165 (1985) 55 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    G. Gelmini, L.J. Hall and M. Lin, What is the cosmion?, Nucl. Phys. B 281 (1987) 726 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    R.S. Chivukula and T.P. Walker, Technicolor cosmology, Nucl. Phys. B 329 (1990) 445 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S.M. Barr, R.S. Chivukula and E. Farhi, Electroweak fermion number violation and the production of stable particles in the early universe, Phys. Lett. B 241 (1990) 387 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    D.B. Kaplan, A Single explanation for both the baryon and dark matter densities, Phys. Rev. Lett. 68 (1992) 741 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    D. Hooper, J. March-Russell and S.M. West, Asymmetric sneutrino dark matter and the Ωb /ΩDM puzzle, Phys. Lett. B 605 (2005) 228 [hep-ph/0410114] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    R. Kitano and I. Low, Dark matter from baryon asymmetry, Phys. Rev. D 71 (2005) 023510 [hep-ph/0411133] [INSPIRE].ADSGoogle Scholar
  12. [12]
    N. Cosme, L. Lopez Honorez and M.H. Tytgat, Leptogenesis and dark matter related?, Phys. Rev. D 72 (2005) 043505 [hep-ph/0506320] [INSPIRE].ADSGoogle Scholar
  13. [13]
    G.R. Farrar and G. Zaharijas, Dark matter and the baryon asymmetry, Phys. Rev. Lett. 96 (2006) 041302 [hep-ph/0510079] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    D. Suematsu, Nonthermal production of baryon and dark matter, Astropart. Phys. 24 (2006) 511 [hep-ph/0510251] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M.H. Tytgat, Relating leptogenesis and dark matter, hep-ph/0606140 [INSPIRE].
  16. [16]
    D.E. Kaplan, M.A. Luty and K.M. Zurek, Asymmetric Dark Matter, Phys. Rev. D 79 (2009) 115016 [arXiv:0901.4117] [INSPIRE].ADSGoogle Scholar
  17. [17]
    H. An, S.-L. Chen, R.N. Mohapatra and Y. Zhang, Leptogenesis as a Common Origin for Matter and Dark Matter, JHEP 03 (2010) 124 [arXiv:0911.4463] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    D.E. Kaplan, G.Z. Krnjaic, K.R. Rehermann and C.M. Wells, Atomic Dark Matter, JCAP 05 (2010) 021 [arXiv:0909.0753] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    J. Shelton and K.M. Zurek, Darkogenesis: A baryon asymmetry from the dark matter sector, Phys. Rev. D 82 (2010) 123512 [arXiv:1008.1997] [INSPIRE].ADSGoogle Scholar
  20. [20]
    N. Haba and S. Matsumoto, Baryogenesis from Dark Sector, Prog. Theor. Phys. 125 (2011) 1311 [arXiv:1008.2487] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M.R. Buckley and L. Randall, Xogenesis, JHEP 09 (2011) 009 [arXiv:1009.0270] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    E.J. Chun, Leptogenesis origin of Dirac gaugino dark matter, Phys. Rev. D 83 (2011) 053004 [arXiv:1009.0983] [INSPIRE].MathSciNetADSGoogle Scholar
  23. [23]
    P.-H. Gu, M. Lindner, U. Sarkar and X. Zhang, WIMP Dark Matter and Baryogenesis, Phys. Rev. D 83 (2011) 055008 [arXiv:1009.2690] [INSPIRE].ADSGoogle Scholar
  24. [24]
    B. Dutta and J. Kumar, Asymmetric Dark Matter from Hidden Sector Baryogenesis, Phys. Lett. B 699 (2011) 364 [arXiv:1012.1341] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M. Blennow, B. Dasgupta, E. Fernandez-Martinez and N. Rius, Aidnogenesis via Leptogenesis and Dark Sphalerons, JHEP 03 (2011) 014 [arXiv:1009.3159] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Falkowski, J.T. Ruderman and T. Volansky, Asymmetric Dark Matter from Leptogenesis, JHEP 05 (2011) 106 [arXiv:1101.4936] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    F. D’Eramo, L. Fei and J. Thaler, Dark Matter Assimilation into the Baryon Asymmetry, JCAP 03 (2012) 010 [arXiv:1111.5615] [INSPIRE].CrossRefGoogle Scholar
  28. [28]
    Z. Kang and T. Li, Asymmetric Origin for Gravitino Relic Density in the Hybrid Gravity-Gauge Mediated Supersymmetry Breaking, arXiv:1111.7313 [INSPIRE].
  29. [29]
    K. Kohri, A. Mazumdar, N. Sahu and P. Stephens, Probing Unified Origin of Dark Matter and Baryon Asymmetry at PAMELA/Fermi, Phys. Rev. D 80 (2009) 061302 [arXiv:0907.0622] [INSPIRE].ADSGoogle Scholar
  30. [30]
    C. Arina and N. Sahu, Asymmetric Inelastic Inert Doublet Dark Matter from Triplet Scalar Leptogenesis, Nucl. Phys. B 854 (2012) 666 [arXiv:1108.3967] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A. Belyaev, M.T. Frandsen, S. Sarkar and F. Sannino, Mixed dark matter from technicolor, Phys. Rev. D 83 (2011) 015007 [arXiv:1007.4839] [INSPIRE].ADSGoogle Scholar
  32. [32]
    M.T. Frandsen, S. Sarkar and K. Schmidt-Hoberg, Light asymmetric dark matter from new strong dynamics, Phys. Rev. D 84 (2011) 051703 [arXiv:1103.4350] [INSPIRE].ADSGoogle Scholar
  33. [33]
    Y. Cui, L. Randall and B. Shuve, Emergent Dark Matter, Baryon and Lepton Numbers, JHEP 08 (2011) 073 [arXiv:1106.4834] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    R. Kitano, H. Murayama and M. Ratz, Unified origin of baryons and dark matter, Phys. Lett. B 669 (2008) 145 [arXiv:0807.4313] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    L.J. Hall, J. March-Russell and S.M. West, A Unified Theory of Matter Genesis: Asymmetric Freeze-In, arXiv:1010.0245 [INSPIRE].
  36. [36]
    H. Davoudiasl, D.E. Morrissey, K. Sigurdson and S. Tulin, Hylogenesis: A Unified Origin for Baryonic Visible Matter and Antibaryonic Dark Matter, Phys. Rev. Lett. 105 (2010) 211304 [arXiv:1008.2399] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    C. Cheung and K.M. Zurek, Affleck-Dine Cogenesis, Phys. Rev. D 84 (2011) 035007 [arXiv:1105.4612] [INSPIRE].ADSGoogle Scholar
  38. [38]
    J. March-Russell and M. McCullough, Asymmetric Dark Matter via Spontaneous Co-Genesis, JCAP 03 (2012) 019 [arXiv:1106.4319] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Freytsis and Z. Ligeti, On dark matter models with uniquely spin-dependent detection possibilities, Phys. Rev. D 83 (2011) 115009 [arXiv:1012.5317] [INSPIRE].ADSGoogle Scholar
  40. [40]
    A. Kurylov and M. Kamionkowski, Generalized analysis of weakly interacting massive particle searches, Phys. Rev. D 69 (2004) 063503 [hep-ph/0307185] [INSPIRE].ADSGoogle Scholar
  41. [41]
    A.L. Fitzpatrick, D. Hooper and K.M. Zurek, Implications of CoGeNT and DAMA for Light WIMP Dark Matter, Phys. Rev. D 81 (2010) 115005 [arXiv:1003.0014] [INSPIRE].ADSGoogle Scholar
  42. [42]
    J. Fan, M. Reece and L.-T. Wang, Non-relativistic effective theory of dark matter direct detection, JCAP 11 (2010) 042 [arXiv:1008.1591] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    P. Agrawal, Z. Chacko, C. Kilic and R.K. Mishra, A Classification of Dark Matter Candidates with Primarily Spin-Dependent Interactions with Matter, arXiv:1003.1912 [INSPIRE].
  44. [44]
    M. Beltrán, D. Hooper, E.W. Kolb and Z.C. Krusberg, Deducing the nature of dark matter from direct and indirect detection experiments in the absence of collider signatures of new physics, Phys. Rev. D 80 (2009) 043509 [arXiv:0808.3384] [INSPIRE].ADSGoogle Scholar
  45. [45]
    P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, LEP Shines Light on Dark Matter, Phys. Rev. D 84 (2011) 014028 [arXiv:1103.0240] [INSPIRE].ADSGoogle Scholar
  46. [46]
    R. Harnik and G.D. Kribs, An Effective Theory of Dirac Dark Matter, Phys. Rev. D 79 (2009) 095007 [arXiv:0810.5557] [INSPIRE].ADSGoogle Scholar
  47. [47]
    A. Rajaraman, W. Shepherd, T.M. Tait and A.M. Wijangco, LHC Bounds on Interactions of Dark Matter, Phys. Rev. D 84 (2011) 095013 [arXiv:1108.1196] [INSPIRE].ADSGoogle Scholar
  48. [48]
    P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, Missing Energy Signatures of Dark Matter at the LHC, Phys. Rev. D 85 (2012) 056011 [arXiv:1109.4398] [INSPIRE].ADSGoogle Scholar
  49. [49]
    A. Friedland, M.L. Graesser, I.M. Shoemaker and L. Vecchi, Probing Nonstandard Standard Model Backgrounds with LHC Monojets, Phys. Lett. B 714 (2012) 267 [arXiv:1111.5331] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    I.M. Shoemaker and L. Vecchi, Unitarity and Monojet Bounds on Models for DAMA, CoGeNT and CRESST-II, arXiv:1112.5457 [INSPIRE].
  51. [51]
    P.J. Fox, R. Harnik, R. Primulando and C.-T. Yu, Taking a Razor to Dark Matter Parameter Space at the LHC, arXiv:1203.1662 [INSPIRE].
  52. [52]
    K. Griest and D. Seckel, Cosmic Asymmetry, Neutrinos and the Sun, Nucl. Phys. B 283 (1987) 681 [Erratum ibid. B 296 (1988) 1034] [INSPIRE].
  53. [53]
    M.R. Buckley, Asymmetric Dark Matter and Effective Operators, Phys. Rev. D 84 (2011) 043510 [arXiv:1104.1429] [INSPIRE].ADSGoogle Scholar
  54. [54]
    T. Lin, H.-B. Yu and K.M. Zurek, On Symmetric and Asymmetric Light Dark Matter, Phys. Rev. D 85 (2012) 063503 [arXiv:1111.0293] [INSPIRE].ADSGoogle Scholar
  55. [55]
    J. March-Russell, J. Unwin and S.M. West, Closing in on asymmetric dark matter II, OUTP-12-02P, in preparation.Google Scholar
  56. [56]
    H. Iminniyaz, M. Drees and X. Chen, Relic Abundance of Asymmetric Dark Matter, JCAP 07 (2011) 003 [arXiv:1104.5548] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    M.L. Graesser, I.M. Shoemaker and L. Vecchi, Asymmetric WIMP dark matter, JHEP 10 (2011) 110 [arXiv:1103.2771] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    P. Gondolo, J. Edsjo, P. Ullio, L. Bergstrom, M. Schelke and E.A. Baltz, DarkSUSY: Computing supersymmetric dark matter properties numerically, JCAP 07 (2004) 008 [astro-ph/0406204] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    N. Jarosik et al., Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors and Basic Results, Astrophys. J. Suppl. 192 (2011) 14 [arXiv:1001.4744] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    R. Mertig, M. Böhm and A. Denner, FEYN CALC: Computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    G. Bélanger, F. Boudjema, P. Brun, A. Pukhov, S. Rosier-Lees, P. Salati and A. Semenov, Indirect search for dark matter with MicrOMEGAs2.4, Comput. Phys. Commun. 182 (2011) 842 [arXiv:1004.1092] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  62. [62]
    J.R. Ellis, K.A. Olive and C. Savage, Hadronic Uncertainties in the Elastic Scattering of Supersymmetric Dark Matter, Phys. Rev. D 77 (2008) 065026 [arXiv:0801.3656] [INSPIRE].ADSGoogle Scholar
  63. [63]
    COMPASS collaboration, M. Alekseev et al., The Polarised Valence Quark Distribution from semi-inclusive DIS, Phys. Lett. B 660 (2008) 458 [arXiv:0707.4077] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    M.F. Altmann et al., Results and plans of the CRESST dark matter search, astro-ph/0106314 [INSPIRE].
  65. [65]
    XENON10 collaboration, J. Angle et al., A search for light dark matter in XENON10 data, Phys. Rev. Lett. 107 (2011) 051301 [arXiv:1104.3088] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    CDMS collaboration, D. Akerib et al., A low-threshold analysis of CDMS shallow-site data, Phys. Rev. D 82 (2010) 122004 [arXiv:1010.4290] [INSPIRE].ADSGoogle Scholar
  67. [67]
    DAMIC collaboration, J. Barreto et al., Direct Search for Low Mass Dark Matter Particles with CCDs, Phys. Lett. B 711 (2012) 264 [arXiv:1105.5191] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    XENON100 collaboration, E. Aprile et al., Dark Matter Results from 100 Live Days of XENON100 Data, Phys. Rev. Lett. 107 (2011) 131302 [arXiv:1104.2549] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    M. Felizardo et al., Final Analysis and Results of the Phase II SIMPLE Dark Matter Search, Phys. Rev. Lett. 108 (2012) 201302 [arXiv:1106.3014] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    ATLAS collaboration, Search for New Phenomena in Monojet plus Missing Transverse Momentum Final States using 1 fb −1 of pp Collisions at \( \sqrt {s} = {7} \) TeV with the ATLAS Detector, ATLAS-CONF-2011-096 (2011).
  71. [71]
    CMS collaboration, Search for New Physics with a Monojet and Missing Transverse Energy in pp Collisions at \( \sqrt {s} = {7} \) TeV, PAS-EXO-11-059.
  72. [72]
    A. Pukhov, CalcHEP 2.3: MSSM, structure functions, event generation, batchs and generation of matrix elements for other packages, hep-ph/0412191 [INSPIRE].
  73. [73]
    CDF collaboration, T. Aaltonen et al., A Search for dark matter in events with one jet and missing transverse energy in pp collisions at \( \sqrt {s} = {1}.{96} \) TeV, Phys. Rev. Lett. 108 (2012) 211804 [arXiv:1203.0742] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    CMS collaboration, S. Chatrchyan et al., Search for dark matter and large extra dimensions in monojet events in pp collisions at \( \sqrt {s} = 7 \), arXiv:1206.5663 [INSPIRE].
  75. [75]
    BABAR collaboration, B. Aubert et al., A Search for Invisible Decays of the Upsilon(1S), Phys. Rev. Lett. 103 (2009) 251801 [arXiv:0908.2840] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    D.T. Cumberbatch, J. Guzik, J. Silk, L.S. Watson and S.M. West, Light WIMPs in the Sun: Constraints from Helioseismology, Phys. Rev. D 82 (2010) 103503 [arXiv:1005.5102] [INSPIRE].ADSGoogle Scholar
  77. [77]
    M.T. Frandsen and S. Sarkar, Asymmetric dark matter and the Sun, Phys. Rev. Lett. 105 (2010) 011301 [arXiv:1003.4505] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    A.R. Zentner and A.P. Hearin, Asymmetric Dark Matter May Alter the Evolution of Low-mass Stars and Brown Dwarfs, Phys. Rev. D 84 (2011) 101302 [arXiv:1110.5919] [INSPIRE].ADSGoogle Scholar
  79. [79]
    F. Iocco, M. Taoso, F. Leclercq and G. Meynet, Main sequence stars with asymmetric dark matter, Phys. Rev. Lett. 108 (2012) 061301 [arXiv:1201.5387] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    H. Davoudiasl, D.E. Morrissey, K. Sigurdson and S. Tulin, Baryon Destruction by Asymmetric Dark Matter, Phys. Rev. D 84 (2011) 096008 [arXiv:1106.4320] [INSPIRE].ADSGoogle Scholar
  81. [81]
    C. Kouvaris and P. Tinyakov, Constraining Asymmetric Dark Matter through observations of compact stars, Phys. Rev. D 83 (2011) 083512 [arXiv:1012.2039] [INSPIRE].ADSGoogle Scholar
  82. [82]
    S.D. McDermott, H.-B. Yu and K.M. Zurek, Constraints on Scalar Asymmetric Dark Matter from Black Hole Formation in Neutron Stars, Phys. Rev. D 85 (2012) 023519 [arXiv:1103.5472] [INSPIRE].ADSGoogle Scholar
  83. [83]
    C. Kouvaris and P. Tinyakov, Excluding Light Asymmetric Bosonic Dark Matter, Phys. Rev. Lett. 107 (2011) 091301 [arXiv:1104.0382] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    J.M. Cline, Z. Liu and W. Xue, Millicharged Atomic Dark Matter, Phys. Rev. D 85 (2012) 101302 [arXiv:1201.4858] [INSPIRE].ADSGoogle Scholar
  85. [85]
    K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].ADSGoogle Scholar
  86. [86]
    B. Patt and F. Wilczek, Higgs-field portal into hidden sectors, hep-ph/0605188 [INSPIRE].
  87. [87]
    J. March-Russell, S.M. West, D. Cumberbatch and D. Hooper, Heavy Dark Matter Through the Higgs Portal, JHEP 07 (2008) 058 [arXiv:0801.3440] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3, OPAL collaborations, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [INSPIRE].ADSGoogle Scholar
  89. [89]
    A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, Phys. Lett. B 709 (2012) 65 [arXiv:1112.3299] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    C. Englert, T. Plehn, D. Zerwas and P.M. Zerwas, Exploring the Higgs portal, Phys. Lett. B 703 (2011) 298 [arXiv:1106.3097] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    L. Lopez-Honorez, T. Schwetz and J. Zupan, Higgs portal, fermionic dark matter and a Standard Model like Higgs at 125 GeV, arXiv:1203.2064 [INSPIRE].
  92. [92]
    P.J. Fox and E. Poppitz, Leptophilic Dark Matter, Phys. Rev. D 79 (2009) 083528 [arXiv:0811.0399] [INSPIRE].ADSGoogle Scholar
  93. [93]
    DAMA, LIBRA collaborations, R. Bernabei et al., New results from DAMA/LIBRA, Eur. Phys. J. C 67 (2010) 39 [arXiv:1002.1028] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    J.L. Feng, J. Kumar, D. Marfatia and D. Sanford, Isospin-Violating Dark Matter, Phys. Lett. B 703 (2011) 124 [arXiv:1102.4331] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    B. von Harling and A. Hebecker, Sequestered Dark Matter, JHEP 05 (2008) 031 [arXiv:0801.4015] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    X. Chen and S.-H.H. Tye, Heating in brane inflation and hidden dark matter, JCAP 06 (2006) 011 [hep-th/0602136] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  97. [97]
    A. Hebecker and J. March-Russell, The Ubiquitous throat, Nucl. Phys. B 781 (2007) 99 [hep-th/0607120] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  98. [98]
    M. Berg, D. Marsh, L. McAllister and E. Pajer, Sequestering in String Compactifications, JHEP 06 (2011) 134 [arXiv:1012.1858] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  99. [99]
    T. Cohen, D.J. Phalen, A. Pierce and K.M. Zurek, Asymmetric Dark Matter from a GeV Hidden Sector, Phys. Rev. D 82 (2010) 056001 [arXiv:1005.1655] [INSPIRE].ADSGoogle Scholar
  100. [100]
    D.E. Morrissey, D. Poland and K.M. Zurek, Abelian Hidden Sectors at a GeV, JHEP 07 (2009) 050 [arXiv:0904.2567] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    C. Cheung, G. Elor, L.J. Hall and P. Kumar, Origins of Hidden Sector Dark Matter I: Cosmology, JHEP 03 (2011) 042 [arXiv:1010.0022] [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    C. Cheung, G. Elor, L.J. Hall and P. Kumar, Origins of Hidden Sector Dark Matter II: Collider Physics, JHEP 03 (2011) 085 [arXiv:1010.0024] [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    M.J. Strassler and K.M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B 651 (2007) 374 [hep-ph/0604261] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • John March-Russell
    • 1
  • James Unwin
    • 1
    • 2
  • Stephen M. West
    • 3
    • 4
  1. 1.Rudolf Peierls Centre for Theoretical PhysicsUniversity of OxfordOxfordU.K.
  2. 2.Mathematical InstituteUniversity of OxfordOxfordU.K.
  3. 3.Royal HollowayUniversity of LondonEghamU.K.
  4. 4.Rutherford Appleton LaboratoryDidcotU.K.

Personalised recommendations