Lattice QCD at the physical point: simulation and analysis details

  • Budapest-Marseille-Wuppertal collaboration
  • S. Dürr
  • Z. FodorEmail author
  • C. Hoelbling
  • S. D. Katz
  • S. Krieg
  • T. Kurth
  • L. Lellouch
  • T. Lippert
  • K. K. Szabó
  • G. Vulvert
Open Access


We give details of our precise determination of the light quark masses m ud  = (m u  + m d )/2 and m s in 2 + 1 flavor QCD, with simulated pion masses down to 120 MeV, at five lattice spacings, and in large volumes. The details concern the action and algorithm employed, the HMC force with HEX smeared clover fermions, the choice of the scale setting procedure and of the input masses. After an overview of the simulation parameters, extensive checks of algorithmic stability, autocorrelation and (practical) ergodicity are reported. To corroborate the good scaling properties of our action, explicit tests of the scaling of hadron masses in N f  = 3 QCD are carried out. Details of how we control finite volume effects through dedicated finite volume scaling runs are reported. To check consistency with SU(2) Chiral Perturbation Theory the behavior of M π 2 /m ud and F π as a function of m ud is investigated. Details of how we use the RI/MOM procedure with a separate continuum limit of the running of the scalar density R S (μ, μ′) are given. This procedure is shown to reproduce the known value of r 0 m s in quenched QCD. Input from dispersion theory is used to split our value of m ud into separate values of m u and m d . Finally, our procedure to quantify both systematic and statistical uncertainties is discussed.


Lattice QCD Lattice Gauge Field Theories 


  1. [1]
    S. Dürr et al., Lattice QCD at the physical point: light quark masses, Phys. Lett. B 701 (2011) 265 [arXiv:1011.2403] [SPIRES].ADSGoogle Scholar
  2. [2]
    S. Dürr et al., Ab-initio determination of light hadron masses, Science 322 (2008) 1224 [arXiv:0906.3599] [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    G. Colangelo, S. Dürr and C. Haefeli, Finite volume effects for meson masses and decay constants, Nucl. Phys. B 721 (2005) 136 [hep-lat/0503014] [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    M. Lüscher and P. Weisz, Computation of the action for on-shell improved lattice gauge theories at weak coupling, Phys. Lett. B 158 (1985) 250 [SPIRES].ADSGoogle Scholar
  5. [5]
    B. Sheikholeslami and R. Wohlert, Improved continuum limit lattice action for QCD with Wilson fermions, Nucl. Phys. B 259 (1985) 572 [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    A. Hasenfratz and F. Knechtli, Flavor symmetry and the static potential with hypercubic blocking, Phys. Rev. D 64 (2001) 034504 [hep-lat/0103029] [SPIRES].ADSGoogle Scholar
  7. [7]
    C. Morningstar and M.J. Peardon, Analytic smearing of SU(3) link variables in lattice QCD, Phys. Rev. D 69 (2004) 054501 [hep-lat/0311018] [SPIRES].ADSGoogle Scholar
  8. [8]
    S. Capitani, S. Dürr and C. Hölbling, Rationale for UV-filtered clover fermions, JHEP 11 (2006) 028 [hep-lat/0607006] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    S. Dürr et al., Scaling study of dynamical smeared-link clover fermions, Phys. Rev. D 79 (2009) 014501 [arXiv:0802.2706] [SPIRES].ADSGoogle Scholar
  10. [10]
    S. Duane, A.D. Kennedy, B.J. Pendleton and D. Roweth, Hybrid Monte Carlo, Phys. Lett. B 195 (1987) 216 [SPIRES].ADSGoogle Scholar
  11. [11]
    T.A. De Grand and P. Rossi, Conditioning techniques for dynamical fermions, Comput. Phys. Commun. 60 (1990) 211 [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    J.C. Sexton and D.H. Weingarten, Hamiltonian evolution for the hybrid Monte Carlo algorithm, Nucl. Phys. B 380 (1992) 665 [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    M. Hasenbusch, Speeding up the hybrid-Monte-Carlo algorithm for dynamical fermions, Phys. Lett. B 519 (2001) 177 [hep-lat/0107019] [SPIRES].ADSGoogle Scholar
  14. [14]
    T. Takaishi and P. de Forcrand, Testing and tuning new symplectic integrators for hybrid Monte Carlo algorithm in lattice QCD, Phys. Rev. E 73 (2006) 036706 [hep-lat/0505020] [SPIRES].ADSGoogle Scholar
  15. [15]
    M.A. Clark and A.D. Kennedy, Accelerating dynamical fermion computations using the Rational Hybrid Monte Carlo (RHMC) algorithm with multiple pseudofermion fields, Phys. Rev. Lett. 98 (2007) 051601 [hep-lat/0608015] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    C. Urbach, K. Jansen, A. Shindler and U. Wenger, HMC algorithm with multiple time scale integration and mass preconditioning, Comput. Phys. Commun. 174 (2006) 87 [hep-lat/0506011] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    PACS-CS collaboration, S. Aoki et al., 2 + 1 flavor lattice QCD toward the physical point, Phys. Rev. D 79 (2009) 034503 [arXiv:0807.1661] [SPIRES].ADSGoogle Scholar
  18. [18]
    A. Hasenfratz, R. Hoffmann and S. Schaefer, Hypercubic smeared links for dynamical fermions, JHEP 05 (2007) 029 [hep-lat/0702028] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    W. Kamleh, D.B. Leinweber and A.G. Williams, Hybrid Monte Carlo with fat link fermion actions, Phys. Rev. D 70 (2004) 014502 [hep-lat/0403019] [SPIRES].ADSGoogle Scholar
  20. [20]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [SPIRES].Google Scholar
  21. [21]
    FLAG working group, G. Colangelo et al., Review of lattice results concerning low-energy particle physics, forthcoming.Google Scholar
  22. [22]
    MILC collaboration, C. Aubin et al., Light pseudoscalar decay constants, quark masses and low energy constants from three-flavor lattice QCD, Phys. Rev. D 70 (2004) 114501 [hep-lat/0407028] [SPIRES].ADSGoogle Scholar
  23. [23]
    I. Montvay and G. Munster, Quantum fields on a lattice, Cambridge University Press, Cambridge U.K. (1994).CrossRefGoogle Scholar
  24. [24]
    L. Del Debbio, L. Giusti, M. Lüscher, R. Petronzio and N. Tantalo, Stability of lattice QCD simulations and the thermodynamic limit, JHEP 02 (2006) 011 [hep-lat/0512021] [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    B. Alles, G. Boyd, M. D’Elia, A. Di Giacomo and E. Vicari, Hybrid Monte Carlo and topological modes of full QCD, Phys. Lett. B 389 (1996) 107 [hep-lat/9607049] [SPIRES].ADSGoogle Scholar
  26. [26]
    B. Alles et al., Scanning the topological sectors of the QCD vacuum with hybrid Monte Carlo, Phys. Rev. D 58 (1998) 071503 [hep-lat/9803008] [SPIRES].ADSGoogle Scholar
  27. [27]
    S. Schaefer, R. Sommer and F. Virotta, Investigating the critical slowing down of QCD simulations, PoS(LAT2009)032 [arXiv:0910.1465] [SPIRES].
  28. [28]
    S. Dürr, Z. Fodor, C. Hölbling and T. Kurth, Precision study of the SU(3) topological susceptibility in the continuum, JHEP 04 (2007) 055 [hep-lat/0612021] [SPIRES].CrossRefGoogle Scholar
  29. [29]
    ALPHA collaboration, U. Wolff, Monte Carlo errors with less errors, Comput. Phys. Commun. 156 (2004) 143 [hep-lat/0306017] [SPIRES].CrossRefzbMATHADSGoogle Scholar
  30. [30]
    M. Lüscher, Volume dependence of the energy spectrum in massive quantum field theories. 1. Stable particle states, Commun. Math. Phys. 104 (1986) 177 [SPIRES].CrossRefzbMATHADSGoogle Scholar
  31. [31]
    M. Lüscher, Volume dependence of the energy spectrum in massive quantum field theories. 2. Scattering states, Commun. Math. Phys. 105 (1986) 153 [SPIRES].CrossRefADSGoogle Scholar
  32. [32]
    M. Lüscher, Two particle states on a torus and their relation to the scattering matrix, Nucl. Phys. B 354 (1991) 531 [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    M. Lüscher, Signatures of unstable particles in finite volume, Nucl. Phys. B 364 (1991) 237 [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    J. Gasser and H. Leutwyler, Light quarks at low temperatures, Phys. Lett. B 184 (1987) 83 [SPIRES].ADSGoogle Scholar
  35. [35]
    J. Gasser and H. Leutwyler, Thermodynamics of chiral symmetry, Phys. Lett. B 188 (1987) 477 [SPIRES].ADSGoogle Scholar
  36. [36]
    J. Gasser and H. Leutwyler, Spontaneously broken symmetries: effective lagrangians at finite volume, Nucl. Phys. B 307 (1988) 763 [SPIRES].CrossRefADSGoogle Scholar
  37. [37]
    QCDSF-UKQCD collaboration, A. Ali Khan et al., The nucleon mass in N f = 2 lattice QCD: finite size effects from chiral perturbation theory, Nucl. Phys. B 689 (2004) 175 [hep-lat/0312030] [SPIRES].CrossRefADSGoogle Scholar
  38. [38]
    G. Colangelo, A. Fuhrer and S. Lanz, Finite volume effects for nucleon and heavy meson masses, Phys. Rev. D 82 (2010) 034506 [arXiv:1005.1485] [SPIRES].ADSGoogle Scholar
  39. [39]
    J. Gasser and H. Leutwyler, Chiral perturbation theory to one loop, Ann. Phys. 158 (1984) 142 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  40. [40]
    J. Gasser and H. Leutwyler, Chiral perturbation theory: expansions in the mass of the strange quark, Nucl. Phys. B 250 (1985) 465 [SPIRES].CrossRefADSGoogle Scholar
  41. [41]
    G. Colangelo, J. Gasser and H. Leutwyler, ππ scattering, Nucl. Phys. B 603 (2001) 125 [hep-ph/0103088] [SPIRES].CrossRefADSGoogle Scholar
  42. [42]
    QCDSF collaboration, M. Gockeler et al., Determination of light and strange quark masses from full lattice QCD, Phys. Lett. B 639 (2006) 307 [hep-ph/0409312] [SPIRES].ADSGoogle Scholar
  43. [43]
    P.E.L. Rakow, Progress towards finding quark masses and the QCD scale Lambda from the lattice, Nucl. Phys. Proc. Suppl. 140 (2005) 34 [hep-lat/0411036] [SPIRES].CrossRefADSGoogle Scholar
  44. [44]
    T. Bhattacharya, R. Gupta, W. Lee, S.R. Sharpe and J.M.S. Wu, Improved bilinears in lattice QCD with non-degenerate quarks, Phys. Rev. D 73 (2006) 034504 [hep-lat/0511014] [SPIRES].ADSGoogle Scholar
  45. [45]
    G. Martinelli, C. Pittori, C.T. Sachrajda, M. Testa and A. Vladikas, A general method for nonperturbative renormalization of lattice operators, Nucl. Phys. B 445 (1995) 81 [hep-lat/9411010] [SPIRES].CrossRefADSGoogle Scholar
  46. [46]
    K.G. Chetyrkin and A. Retey, Renormalization and running of quark mass and field in the regularization invariant and MS-bar schemes at three and four loops, Nucl. Phys. B 583 (2000) 3 [hep-ph/9910332] [SPIRES].CrossRefADSGoogle Scholar
  47. [47]
    UKQCD collaboration, D.B. Leinweber, J.I. Skullerud, A.G. Williams and C. Parrinello, Gluon propagator in the infrared region, Phys. Rev. D 58 (1998) 031501 [hep-lat/9803015] [SPIRES].ADSGoogle Scholar
  48. [48]
    QCDSF-UKQCD collaboration, T. Bakeyev et al., Non-perturbative renormalisation and improvement of the local vector current for quenched and unquenched Wilson fermions, Phys. Lett. B 580 (2004) 197 [hep-lat/0305014] [SPIRES].ADSGoogle Scholar
  49. [49]
    G. Martinelli, C.T. Sachrajda and A. Vladikas, A study of ’improvement’ in lattice QCD, Nucl. Phys. B 358 (1991) 212 [SPIRES].CrossRefADSGoogle Scholar
  50. [50]
    G. Martinelli, S. Petrarca, C.T. Sachrajda and A. Vladikas, Nonperturbative renormalization of two quark operators with an improved lattice fermion action, Phys. Lett. B 311 (1993) 241 [Erratum ibid. B 317 (1993) 660] [SPIRES].ADSGoogle Scholar
  51. [51]
    D. Becirevic, V. Giménez, V. Lubicz and G. Martinelli, Light quark masses from lattice quark propagators at large momenta, Phys. Rev. D 61 (2000) 114507 [hep-lat/9909082] [SPIRES].ADSGoogle Scholar
  52. [52]
    S. Capitani et al., Renormalisation and off-shell improvement in lattice perturbation theory, Nucl. Phys. B 593 (2001) 183 [hep-lat/0007004] [SPIRES].ADSGoogle Scholar
  53. [53]
    G. Martinelli et al., Non-perturbative improvement of lattice QCD at large momenta, Nucl. Phys. B 611 (2001) 311 [hep-lat/0106003] [SPIRES].CrossRefADSGoogle Scholar
  54. [54]
    V. Maillart and F. Niedermayer, A specific lattice artefact in non-perturbative renormalization of operators, arXiv:0807.0030 [SPIRES].
  55. [55]
    RBC collaboration, R. Arthur and P.A. Boyle, Step Scaling with off-shell renormalisation, Phys. Rev. D 83 (2011) 114511 [arXiv:1006.0422] [SPIRES].ADSGoogle Scholar
  56. [56]
    ETM collaboration, M. Constantinou et al., Non-perturbative renormalization of quark bilinear operators with N f = 2 (tmQCD) Wilson fermions and the tree-level improved gauge action, JHEP 08 (2010) 068 [arXiv:1004.1115] [SPIRES].CrossRefADSGoogle Scholar
  57. [57]
    ALPHA collaboration, J. Garden, J. Heitger, R. Sommer and H. Wittig, Precision computation of the strange quark’s mass in quenched QCD, Nucl. Phys. B 571 (2000) 237 [hep-lat/9906013] [SPIRES].CrossRefADSGoogle Scholar
  58. [58]
    R. Sommer, A new way to set the energy scale in lattice gauge theories and its applications to the static force and α s in SU(2) Yang-Mills theory, Nucl. Phys. B 411 (1994) 839 [hep-lat/9310022] [SPIRES].CrossRefADSGoogle Scholar
  59. [59]
    JLQCD collaboration, S. Aoki et al., Non-perturbative determination of quark masses in quenched lattice QCD with the Kogut-Susskind fermion action, Phys. Rev. Lett. 82 (1999) 4392 [hep-lat/9901019] [SPIRES].CrossRefADSGoogle Scholar
  60. [60]
    S. Dürr and C. Hölbling, Continuum physics with quenched overlap fermions, Phys. Rev. D 72 (2005) 071501 [hep-ph/0508085] [SPIRES].ADSGoogle Scholar
  61. [61]
    CP-PACS collaboration, S. Aoki et al., Light hadron spectrum and quark masses from quenched lattice QCD, Phys. Rev. D 67 (2003) 034503 [hep-lat/0206009] [SPIRES].ADSGoogle Scholar
  62. [62]
    R.F. Dashen, Chiral SU(3) × SU(3) as a symmetry of the strong interactions, Phys. Rev. 183 (1969) 1245 [SPIRES].CrossRefADSGoogle Scholar
  63. [63]
    H. Leutwyler, The ratios of the light quark masses, Phys. Lett. B 378 (1996) 313 [hep-ph/9602366] [SPIRES].ADSGoogle Scholar
  64. [64]
    C. Ditsche, B. Kubis and U.-G. Meissner, Electromagnetic corrections in η → 3π decays, Eur. Phys. J. C 60 (2009) 83 [arXiv:0812.0344] [SPIRES].CrossRefADSGoogle Scholar
  65. [65]
    J. Kambor, C. Wiesendanger and D. Wyler, Final state interactions and Khuri-Treiman equations in η → 3π decays, Nucl. Phys. B 465 (1996) 215 [hep-ph/9509374] [SPIRES].CrossRefADSGoogle Scholar
  66. [66]
    A.V. Anisovich and H. Leutwyler, Dispersive analysis of the decay η → 3π, Phys. Lett. B 375 (1996) 335 [hep-ph/9601237] [SPIRES].ADSGoogle Scholar
  67. [67]
    G. Colangelo, S. Lanz and E. Passemar, A new dispersive analysis of η → 3π, PoS(CD09)047 [arXiv:0910.0765] [SPIRES].
  68. [68]
    H. Leutwyler, Light quark masses, PoS(CD09)005 [arXiv:0911.1416] [SPIRES].
  69. [69]
    D.B. Kaplan and A.V. Manohar, Current mass ratios of the light quarks, Phys. Rev. Lett. 56 (1986) 2004 [SPIRES].CrossRefADSGoogle Scholar
  70. [70]
    H. Leutwyler, private communication.Google Scholar
  71. [71]
    T. Blum et al., Electromagnetic mass splittings of the low lying hadrons and quark masses from 2 + 1 flavor lattice QCD + QED, Phys. Rev. D 82 (2010) 094508 [arXiv:1006.1311] [SPIRES].ADSGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Budapest-Marseille-Wuppertal collaboration
  • S. Dürr
    • 1
    • 2
  • Z. Fodor
    • 1
    • 2
    • 3
    Email author
  • C. Hoelbling
    • 1
  • S. D. Katz
    • 1
    • 3
  • S. Krieg
    • 1
    • 2
  • T. Kurth
    • 1
  • L. Lellouch
    • 4
  • T. Lippert
    • 1
    • 2
  • K. K. Szabó
    • 1
  • G. Vulvert
    • 4
  1. 1.Bergische Universität WuppertalWuppertalGermany
  2. 2.Jülich Supercomputing CentreJülichGermany
  3. 3.Institute for Theoretical PhysicsEötvös UniversityBudapestHungary
  4. 4.Centre de Physique Théorique,1MarseilleFrance

Personalised recommendations