Duality invariance: from M-theory to double field theory

Article

Abstract

We show how the duality invariant approach to M-theory formulated by Berman and Perry relates to the double field theory proposed by Hull and Zwiebach. In doing so we provide suggestions as to how Ramond fields can be incorporated into the double field theory. We find that the standard dimensional reduction procedure has a duality invariant (doubled) analogue in which the gauge fields of the doubled Kaluza-Klein ansatz encode the Ramond potentials. We identify the internal gauge index of these gauge fields with a spinorial index of O(d, d).

Keywords

Space-Time Symmetries M-Theory String Duality 

References

  1. [1]
    E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B 443 (1995) 85 [hep-th/9503124] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    E. Cremmer, B. Julia and J. Scherk, Supergravity theory in 11 dimensions, Phys. Lett. B 76 (1978) 409 [SPIRES].ADSGoogle Scholar
  3. [3]
    E. Cremmer and B. Julia, The N = 8 supergravity theory. 1. The Lagrangian, Phys. Lett. B 80 (1978) 48 [SPIRES].ADSGoogle Scholar
  4. [4]
    E. Cremmer and B. Julia, The SO(8) supergravity, Nucl. Phys. B 159 (1979) 141 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  5. [5]
    B. de Wit and H. Nicolai, D = 11 supergravity with local SU(8) invariance, Nucl. Phys. B 274 (1986) 363 [SPIRES];CrossRefADSGoogle Scholar
  6. [6]
    B. de Wit and H. Nicolai, Hidden symmetry in D = 11 supergravity, Phys. Lett. B 155 (1985) 47 [SPIRES].ADSGoogle Scholar
  7. [7]
    P.C. West, E 11 and M-theory, Class. Quant. Grav. 18 (2001) 4443 [hep-th/0104081] [SPIRES].CrossRefMATHADSGoogle Scholar
  8. [8]
    B. de Wit and H. Nicolai, Hidden symmetries, central charges and all that, Class. Quant. Grav. 18 (2001) 3095 [hep-th/0011239] [SPIRES].CrossRefMATHADSGoogle Scholar
  9. [9]
    C. Hillmann, E 7(7) invariant Lagrangian of D = 4 N = 8 supergravity, JHEP 04 (2010) 010 [arXiv:0911.5225] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  10. [10]
    D.S. Berman and M.J. Perry, Generalized geometry and M-theory, JHEP 06 (2011) 074 [arXiv:1008.1763] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    D.S. Berman, H. Godazgar and M.J. Perry, SO(5, 5) duality in M-theory and generalized geometry, Phys. Lett. B 700 (2011) 65 [arXiv:1103.5733] [SPIRES].ADSMathSciNetGoogle Scholar
  12. [12]
    R.L. Arnowitt, S. Deser and C.W. Misner, The dynamics of general relativity, gr-qc/0405109 [SPIRES].
  13. [13]
    B.S. De Witt, Quantum theory of gravity. 1. The canonical theory, Phys. Rev. 160 (1967) 1113 [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    M. Gualtieri, Generalized complex geometry, math/0401221.
  15. [15]
    N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. Oxford Ser. 54 (2003) 281 [math/0209099].CrossRefMATHMathSciNetGoogle Scholar
  16. [16]
    C.M. Hull, Generalised geometry for M-theory, JHEP 07 (2007) 079 [hep-th/0701203] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    P.P. Pacheco and D. Waldram, M-theory, exceptional generalised geometry and superpotentials, JHEP 09 (2008) 123 [arXiv:0804.1362] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  18. [18]
    C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  19. [19]
    C. Hull and B. Zwiebach, The gauge algebra of double field theory and Courant brackets, JHEP 09 (2009) 090 [arXiv:0908.1792] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  20. [20]
    O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  21. [21]
    O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  22. [22]
    A.A. Tseytlin, Duality symmetric closed string theory and interacting chiral scalars, Nucl. Phys. B 350 (1991) 395 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  23. [23]
    W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [SPIRES].ADSGoogle Scholar
  24. [24]
    W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [SPIRES].ADSGoogle Scholar
  25. [25]
    P.C. West, E 11 , SL(32) and central charges, Phys. Lett. B 575 (2003) 333 [hep-th/0307098] [SPIRES].ADSGoogle Scholar
  26. [26]
    A. Kleinschmidt and P.C. West, Representations of G+++ and the role of space-time, JHEP 02 (2004) 033 [hep-th/0312247] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  27. [27]
    P.C. West, E 11 origin of brane charges and U-duality multiplets, JHEP 08 (2004) 052 [hep-th/0406150] [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    P.C. West, Brane dynamics, central charges and E 11, JHEP 03 (2005) 077 [hep-th/0412336] [SPIRES].CrossRefADSGoogle Scholar
  29. [29]
    P.P. Cook and P.C. West, Charge multiplets and masses for E 11, JHEP 11 (2008) 091 [arXiv:0805.4451] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  30. [30]
    P. West, E 11 , generalised space-time and IIA string theory, Phys. Lett. B 696 (2011) 403 [arXiv:1009.2624] [SPIRES].ADSGoogle Scholar
  31. [31]
    A. Rocen and P. West, E 11 , generalised space-time and IIA string theory: the RR sector, arXiv:1012.2744 [SPIRES].
  32. [32]
    A. Kleinschmidt and H. Nicolai, E 10 and SO(9, 9) invariant supergravity, JHEP 07 (2004) 041 [hep-th/0407101] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  33. [33]
    M. Fukuma, T. Oota and H. Tanaka, Comments on T-dualities of Ramond-Ramond potentials on tori, Prog. Theor. Phys. 103 (2000) 425 [hep-th/9907132] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  34. [34]
    M.J. Duff, Duality rotations in string theory, Nucl. Phys. B 335 (1990) 610 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  35. [35]
    M.J. Duff and J.X. Lu, Duality rotations in membrane theory, Nucl. Phys. B 347 (1990) 394 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  36. [36]
    A.A. Tseytlin, Duality symmetric formulation of string world sheet dynamics, Phys. Lett. B 242 (1990) 163 [SPIRES].ADSMathSciNetGoogle Scholar
  37. [37]
    C.M. Hull, A geometry for non-geometric string backgrounds, JHEP 10 (2005) 065 [hep-th/0406102] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  38. [38]
    C.M. Hull, Doubled geometry and T-folds, JHEP 07 (2007) 080 [hep-th/0605149] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  39. [39]
    D.C. Thompson, T-duality invariant approaches to string theory, arXiv:1012.4393 [SPIRES].
  40. [40]
    D.S. Berman and N.B. Copland, The string partition function in Hull’s doubled formalism, Phys. Lett. B 649 (2007) 325 [hep-th/0701080] [SPIRES].ADSMathSciNetGoogle Scholar
  41. [41]
    D.S. Berman, N.B. Copland and D.C. Thompson, Background field equations for the duality symmetric string, Nucl. Phys. B 791 (2008) 175 [arXiv:0708.2267] [SPIRES].ADSMathSciNetGoogle Scholar
  42. [42]
    D.S. Berman and D.C. Thompson, Duality symmetric strings, dilatons and O(d, d) effective actions, Phys. Lett. B 662 (2008) 279 [arXiv:0712.1121] [SPIRES].ADSMathSciNetGoogle Scholar
  43. [43]
    N.B. Copland, Connecting T-duality invariant theories, arXiv:1106.1888 [SPIRES].
  44. [44]
    I. Jeon, K. Lee and J.-H. Park, Differential geometry with a projection: Application to double field theory, JHEP 04 (2011) 014 [arXiv:1011.1324] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  45. [45]
    O. Hohm and S.K. Kwak, Double field theory formulation of heterotic strings, JHEP 06 (2011) 096 [arXiv:1103.2136] [SPIRES].CrossRefADSGoogle Scholar
  46. [46]
    O. Hohm and S.K. Kwak, Frame-like geometry of double field theory, J. Phys. A 44 (2011) 085404 [arXiv:1011.4101] [SPIRES].ADSMathSciNetGoogle Scholar
  47. [47]
    O. Kechkin and M. Yurova, BPS solutions in D = 5 dilaton-axion gravity, Mod. Phys. Lett. A 13 (1998) 219 [hep-th/9712200] [SPIRES].ADSMathSciNetGoogle Scholar
  48. [48]
    M. Cvetič and D. Youm, All the four-dimensional static, spherically symmetric solutions of Abelian Kaluza-Klein theory, Phys. Rev. Lett. 75 (1995) 4165 [hep-th/9503082] [SPIRES].CrossRefADSGoogle Scholar
  49. [49]
    K. Peeters, Introducing Cadabra: a symbolic computer algebra system for field theory problems, hep-th/0701238 [SPIRES].
  50. [50]
    K. Peeters, A field-theory motivated approach to symbolic computer algebra, Comput. Phys. Commun. 176 (2007) 550 [cs/0608005].CrossRefMATHADSGoogle Scholar
  51. [51]
    O. Hohm, S.K. Kwak and B. Zwiebach, Unification of type II strings and T-duality, arXiv:1106.5452 [SPIRES].
  52. [52]
    O. Hohm, S.K. Kwak and B. Zwiebach, Double field theory of type II strings, arXiv:1107.0008 [SPIRES].
  53. [53]
    A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as generalised geometry I: type II theories, arXiv:1107.1733 [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Theoretische Natuurkunde, Vrije Universiteit Brussel, and The International Solvay Institutes Pleinlaan 2BrusselsBelgium

Personalised recommendations