Advertisement

NLO matrix elements and truncated showers

  • Stefan Höche
  • Frank Krauss
  • Marek Schönherr
  • Frank Siegert
Open Access
Article

Abstract

In this publication, an algorithm is presented that combines the ME+PS approach to merge sequences of tree-level matrix elements into inclusive event samples [1] with the Powheg method, which combines exact next-to-leading order matrix element results with the parton shower [2, 3]. It was developed in parallel to the MEnloPS technique discussed in [4] and has been implemented in the event generator Sherpa [5, 6]. The benefits of this approach are exemplified by some first predictions for a number of processes, namely the production of jets in e + e -annihilation, in deep-inelastic ep scattering, in association with single W, Z or Higgs bosons, and with vector boson pairs at hadron colliders.

Keywords

QCD Phenomenology 

References

  1. [1]
    S. Höche, F. Krauss, S. Schumann and F. Siegert, QCD matrix elements and truncated showers, JHEP 05 (2009) 053 [arXiv:0903.1219] [SPIRES].CrossRefGoogle Scholar
  2. [2]
    P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the Powheg method, JHEP 11 (2007) 070 [arXiv:0709.2092] [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    K. Hamilton and P. Nason, Improving NLO-parton shower matched simulations with higher order matrix elements, JHEP 06 (2010) 039 [arXiv:1004.1764] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    T. Gleisberg et al., Sherpa 1.α, a proof-of-concept version, JHEP 02 (2004) 056 [hep-ph/0311263] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    T. Gleisberg et al., Event generation with Sherpa 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    G. Corcella et al., Herwig 6.5: an event generator for Hadron Emission Reactions With Interfering Gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    G. Corcella et al., Herwig 6.5 release note, hep-ph/0210213 [SPIRES].
  9. [9]
    T. Sjöstrand, Pythia 5.7 and Jetset 7.4: physics and manual, hep-ph/9508391 [SPIRES].
  10. [10]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, Pythia 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    S. Catani, F. Krauss, R. Kuhn and B.R. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    F. Krauss, Matrix elements and parton showers in hadronic interactions, JHEP 08 (2002) 015 [hep-ph/0205283] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    L. Lönnblad, Correcting the colour-dipole cascade model with fixed order matrix elements, JHEP 05 (2002) 046 [hep-ph/0112284] [SPIRES].CrossRefGoogle Scholar
  14. [14]
    N. Lavesson and L. Lönnblad, Merging parton showers and matrix elements — back to basics, JHEP 04 (2008) 085 [arXiv:0712.2966] [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    K. Hamilton, P. Richardson and J. Tully, A modified CKKW matrix element merging approach to angular-ordered parton showers, JHEP 11 (2009) 038 [arXiv:0905.3072] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    S. Höche, S. Schumann and F. Siegert, Hard photon production and matrix-element parton-shower merging, Phys. Rev. D 81 (2010) 034026 [arXiv:0912.3501] [SPIRES].ADSGoogle Scholar
  17. [17]
    T. Carli, T. Gehrmann and S. Höche, Hadronic final states in deep-inelastic scattering with Sherpa, Eur. Phys. J. C 67 (2010) 73 [arXiv:0912.3715] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    M.L. Mangano, M. Moretti and R. Pittau, Multijet matrix elements and shower evolution in hadronic collisions: \( Wb\bar{b} \) + n-jets as a case study, Nucl. Phys. B 632 (2002) 343 [hep-ph/0108069] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    M.L. Mangano, M. Moretti, F. Piccinini and M. Treccani, Matching matrix elements and shower evolution for top-quark production in hadronic collisions, JHEP 01 (2007) 013 [hep-ph/0611129] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    S. Höche et al., Matching parton showers and matrix elements, hep-ph/0602031 [SPIRES].
  21. [21]
    J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    S. Frixione, P. Nason and B.R. Webber, Matching NLO QCD and parton showers in heavy flavour production, JHEP 08 (2003) 007 [hep-ph/0305252] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    S. Frixione, E. Laenen, P. Motylinski and B.R. Webber, Single-top production in Mc@Nlo, JHEP 03 (2006) 092 [hep-ph/0512250] [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    S. Frixione, E. Laenen, P. Motylinski, B.R. Webber and C.D. White, Single-top hadroproduction in association with a W boson, JHEP 07 (2008) 029 [arXiv:0805.3067] [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    C. Weydert et al., Charged Higgs boson production in association with a top quark in Mc@Nlo, Eur. Phys. J. C 67 (2010) 617 [arXiv:0912.3430] [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    P. Torrielli and S. Frixione, Matching NLO QCD computations with Pythia using Mc@Nlo, JHEP 04 (2010) 110 [arXiv:1002.4293] [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    M.H. Seymour, Matrix element corrections to parton shower algorithms, Comp. Phys. Commun. 90 (1995) 95 [hep-ph/9410414] [SPIRES].CrossRefADSGoogle Scholar
  29. [29]
    M.H. Seymour, A simple prescription for first order corrections to quark scattering and annihilation processes, Nucl. Phys. B 436 (1995) 443 [hep-ph/9410244] [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    G. Corcella and M.H. Seymour, Matrix element corrections to parton shower simulations of heavy quark decay, Phys. Lett. B 442 (1998) 417 [hep-ph/9809451] [SPIRES].ADSGoogle Scholar
  31. [31]
    G. Miu and T. Sjöstrand, W production in an improved parton shower approach, Phys. Lett. B 449 (1999) 313 [hep-ph/9812455] [SPIRES].ADSGoogle Scholar
  32. [32]
    G. Corcella and M.H. Seymour, Initial state radiation in simulations of vector boson production at hadron colliders, Nucl. Phys. B 565 (2000) 227 [hep-ph/9908388] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    E. Norrbin and T. Sjöstrand, QCD radiation off heavy particles, Nucl. Phys. B 603 (2001) 297 [hep-ph/0010012] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for Z pair hadroproduction, JHEP 08 (2006) 077 [hep-ph/0606275] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    S. Frixione, P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction, JHEP 09 (2007) 126 [arXiv:0707.3088] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    S. Frixione, P. Nason and G. Ridolfi, The Powheg -hvq manual version 1.0, arXiv:0707.3081 [SPIRES].
  37. [37]
    S. Alioli, P. Nason, C. Oleari and E. Re, NLO vector-boson production matched with shower in Powheg, JHEP 07 (2008) 060 [arXiv:0805.4802] [SPIRES].CrossRefADSGoogle Scholar
  38. [38]
    S. Alioli, P. Nason, C. Oleari and E. Re, NLO Higgs boson production via gluon fusion matched with shower in Powheg, JHEP 04 (2009) 002 [arXiv:0812.0578] [SPIRES].CrossRefADSGoogle Scholar
  39. [39]
    K. Hamilton, P. Richardson and J. Tully, A positive-weight next-to-leading order Monte Carlo simulation of Drell-Yan vector boson production, JHEP 10 (2008) 015 [arXiv:0806.0290] [SPIRES].CrossRefADSGoogle Scholar
  40. [40]
    S. Alioli, P. Nason, C. Oleari and E. Re, NLO single-top production matched with shower in Powheg: s- and t-channel contributions, JHEP 09 (2009) 111 [Erratum ibid. 02 (2010) 011] [arXiv:0907.4076] [SPIRES].CrossRefADSGoogle Scholar
  41. [41]
    P. Nason and C. Oleari, NLO Higgs boson production via vector-boson fusion matched with shower in Powheg, JHEP 02 (2010) 037 [arXiv:0911.5299] [SPIRES].CrossRefADSGoogle Scholar
  42. [42]
    K. Hamilton, P. Richardson and J. Tully, A positive-weight next-to-leading order Monte Carlo simulation for Higgs boson production, JHEP 04 (2009) 116 [arXiv:0903.4345] [SPIRES].CrossRefADSGoogle Scholar
  43. [43]
    S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the Powheg BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [SPIRES].CrossRefADSGoogle Scholar
  44. [44]
    S. Höche, F. Krauss, M. Schönherr and F. Siegert, Automating the Powheg method in Sherpa, JHEP 04 (2011) 024 [arXiv:1008.5399] [SPIRES].CrossRefGoogle Scholar
  45. [45]
    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [SPIRES].CrossRefADSGoogle Scholar
  46. [46]
    S. Catani, S. Dittmaier, M.H. Seymour and Z. Trócsányi, The dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys. B 627 (2002) 189 [hep-ph/0201036] [SPIRES].CrossRefADSGoogle Scholar
  47. [47]
    S. Catani and L. Trentadue, Resummation of the QCD perturbative series for hard processes, Nucl. Phys. B 327 (1989) 323 [SPIRES].CrossRefADSGoogle Scholar
  48. [48]
    S. Catani, B.R. Webber and G. Marchesini, QCD coherent branching and semiinclusive processes at large x, Nucl. Phys. B 349 (1991) 635 [SPIRES].CrossRefADSGoogle Scholar
  49. [49]
    S. Schumann and F. Krauss, A parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP 03 (2008) 038 [arXiv:0709.1027] [SPIRES].CrossRefADSGoogle Scholar
  50. [50]
    T. Gleisberg and F. Krauss, Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J. C 53 (2008) 501 [arXiv:0709.2881] [SPIRES].CrossRefADSGoogle Scholar
  51. [51]
    F. Krauss, R. Kuhn and G. Soff, Amegic++ 1.0: a Matrix Element Generator In C++, JHEP 02 (2002) 044 [hep-ph/0109036] [SPIRES].CrossRefADSGoogle Scholar
  52. [52]
    P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [SPIRES].ADSGoogle Scholar
  53. [53]
    A. Buckley, Tools for event generator tuning and validation, arXiv:0809.4638 [SPIRES].
  54. [54]
    A. Buckley et al., Rivet user manual, arXiv:1003.0694 [SPIRES].
  55. [55]
    B.M. Waugh et al., HZTool and Rivet: toolkit and framework for the comparison of simulated final states and data at colliders, hep-ph/0605034 [SPIRES].
  56. [56]
    ALEPH collaboration, A. Heister et al., Studies of QCD at e + e centre-of-mass energies between 91 GeV and 209 GeV, Eur. Phys. J. C 35 (2004) 457 [SPIRES].ADSGoogle Scholar
  57. [57]
    OPAL collaboration, G. Abbiendi et al., A simultaneous measurement of the QCD colour factors and the strong coupling, Eur. Phys. J. C 20 (2001) 601 [hep-ex/0101044] [SPIRES].CrossRefADSGoogle Scholar
  58. [58]
    B. Andersson, G. Gustafson, G. Ingelman and T. Sjöstrand, Parton fragmentation and string dynamics, Phys. Rept. 97 (1983) 31 [SPIRES].CrossRefADSGoogle Scholar
  59. [59]
    B. Andersson, The Lund model, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 7, Cambridge University Press, Cambridge U.K. (1997).Google Scholar
  60. [60]
    D. Maître, private communication.Google Scholar
  61. [61]
    C.F. Berger et al., Precise predictions for W + 3 jet production at hadron colliders, Phys. Rev. Lett. 102 (2009) 222001 [arXiv:0902.2760] [SPIRES].CrossRefADSGoogle Scholar
  62. [62]
    C.F. Berger et al., Next-to-leading order QCD predictions for W + 3-jet distributions at hadron colliders, Phys. Rev. D 80 (2009) 074036 [arXiv:0907.1984] [SPIRES].ADSGoogle Scholar
  63. [63]
    C.F. Berger et al., Next-to-leading order QCD predictions for Z, γ * + 3-jet distributions at the Tevatron, Phys. Rev. D 82 (2010) 074002 [arXiv:1004.1659] [SPIRES].ADSGoogle Scholar
  64. [64]
    H1 collaboration, C. Adloff et al., Measurement of inclusive jet cross-sections in deep-inelastic ep scattering at HERA, Phys. Lett. B 542 (2002) 193 [hep-ex/0206029] [SPIRES].ADSGoogle Scholar
  65. [65]
    H1 collaboration, C. Adloff et al., Measurement and QCD analysis of jet cross sections in deep-inelastic positron proton collisions at \( \sqrt {s} \) of 300 GeV, Eur. Phys. J. C 19 (2001) 289 [hep-ex/0010054] [SPIRES].ADSGoogle Scholar
  66. [66]
    S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160 [hep-ph/9305266] [SPIRES].ADSGoogle Scholar
  67. [67]
    S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant k clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [SPIRES].CrossRefADSGoogle Scholar
  68. [68]
    S. Frixione and G. Ridolfi, Jet photoproduction at HERA, Nucl. Phys. B 507 (1997) 315 [hep-ph/9707345] [SPIRES].CrossRefADSGoogle Scholar
  69. [69]
    M. Schönherr and F. Krauss, Soft photon radiation in particle decays in Sherpa, JHEP 12 (2008) 018 [arXiv:0810.5071] [SPIRES].CrossRefADSGoogle Scholar
  70. [70]
    DØ collaboration, V.M. Abazov et al., Measurement of the normalized Z/γ* → μ + μ transverse momentum distribution in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Lett. B 693 (2010) 522 [arXiv:1006.0618] [SPIRES].ADSGoogle Scholar
  71. [71]
    DØ collaboration, V.M. Abazov et al., Measurement of the shape of the boson transverse momentum distribution in \( p\bar{p} \to {{Z} \left/ {{{\gamma^*}}} \right.} \to ee + X \) events produced at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. Lett. 100 (2008) 102002 [arXiv:0712.0803] [SPIRES].CrossRefADSGoogle Scholar
  72. [72]
    DØ collaboration, V.M. Abazov et al., Measurement of the shape of the boson rapidity distribution for \( p\bar{p} \to {{Z} \left/ {{{\gamma^*}}} \right.} \to {e^{+} }{e^{-} } + X \) events produced at \( \sqrt {s} \) of 1.96 TeV, Phys. Rev. D 76 (2007) 012003 [hep-ex/0702025] [SPIRES].ADSGoogle Scholar
  73. [73]
    DØ collaboration, V.M. Abazov et al., Measurement of Z/γ* + jet + X angular distributions in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Lett. B 682 (2010) 370 [arXiv:0907.4286] [SPIRES].ADSGoogle Scholar
  74. [74]
    DØ collaboration, V.M. Abazov et al., Measurement of the ratios of the Z/γ* + ≥ n jet production cross sections to the total inclusive Z/γ* cross section in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Lett. B 658 (2008) 112 [hep-ex/0608052] [SPIRES].ADSGoogle Scholar
  75. [75]
    G.C. Blazey et al., Run II jet physics, hep-ex/0005012 [SPIRES].
  76. [76]
    DØ collaboration, V.M. Abazov et al., Measurements of differential cross sections of Z/γ* + jets + X events in proton anti-proton collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Lett. B 678 (2009) 45 [arXiv:0903.1748] [SPIRES].ADSGoogle Scholar
  77. [77]
    DØ collaboration, B. Abbott et al., Differential cross-section for W boson production as a function of transverse momentum in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.8 \) TeV, Phys. Lett. B 513 (2001) 292 [hep-ex/0010026] [SPIRES].ADSGoogle Scholar
  78. [78]
    C. Anastasiou, K. Melnikov and F. Petriello, Fully differential Higgs boson production and the di-photon signal through next-to-next-to-leading order, Nucl. Phys. B 724 (2005) 197 [hep-ph/0501130] [SPIRES].CrossRefADSGoogle Scholar
  79. [79]
    C. Anastasiou, G. Dissertori and F. Stöckli, NNLO QCD predictions for the H → WW → lνlν signal at the LHC, JHEP 09 (2007) 018 [arXiv:0707.2373] [SPIRES].CrossRefADSGoogle Scholar
  80. [80]
    C. Anastasiou, R. Boughezal and F. Petriello, Mixed QCD-electroweak corrections to Higgs boson production in gluon fusion, JHEP 04 (2009) 003 [arXiv:0811.3458] [SPIRES].CrossRefADSGoogle Scholar
  81. [81]
    S. Catani, D. de Florian, M. Grazzini and P. Nason, Soft-gluon resummation for Higgs boson production at hadron colliders, JHEP 07 (2003) 028 [hep-ph/0306211] [SPIRES].CrossRefADSGoogle Scholar
  82. [82]
    G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Transverse-momentum resummation and the spectrum of the Higgs boson at the LHC, Nucl. Phys. B 737 (2006) 73 [hep-ph/0508068] [SPIRES].CrossRefADSGoogle Scholar
  83. [83]
    J.M. Butterworth et al., The Tools and Monte Carlo working group summary report, arXiv:1003.1643 [SPIRES].
  84. [84]
    S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [SPIRES].CrossRefADSGoogle Scholar
  85. [85]
    A. Djouadi, M. Spira and P. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440 [SPIRES].ADSGoogle Scholar
  86. [86]
    J. Campbell and R.K. Ellis, MCFM — Monte Carlo for FeMtobarn processes homepage, http://mcfm.fnal.gov/, (2011).
  87. [87]
    J.M. Campbell and R.K. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [SPIRES].ADSGoogle Scholar
  88. [88]
    L.J. Dixon, Z. Kunszt and A. Signer, Helicity amplitudes for \( \mathcal{O}\left( {{\alpha_s}} \right) \) production of W + W , W ± Z, ZZ, W ± γ, or Z pairs at hadron colliders, Nucl. Phys. B 531 (1998) 3 [hep-ph/9803250] [SPIRES].CrossRefADSGoogle Scholar
  89. [89]
    T. Gleisberg, F. Krauss, A. Schälicke, S. Schumann and J.-C. Winter, Studying W + W production at the Fermilab Tevatron with Sherpa, Phys. Rev. D 72 (2005) 034028 [hep-ph/0504032] [SPIRES].ADSGoogle Scholar
  90. [90]
    T. Binoth, T. Gleisberg, S. Karg, N. Kauer and G. Sanguinetti, NLO QCD corrections to ZZ + jet production at hadron colliders, Phys. Lett. B 683 (2010) 154 [arXiv:0911.3181] [SPIRES].ADSGoogle Scholar
  91. [91]
    N. Lavesson and L. Lönnblad, Extending CKKW-merging to one-loop matrix elements, JHEP 12 (2008) 070 [arXiv:0811.2912] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Stefan Höche
    • 1
  • Frank Krauss
    • 2
    • 3
  • Marek Schönherr
    • 4
  • Frank Siegert
    • 2
    • 5
  1. 1.Institut für Theoretische PhysikUniversität ZürichZurichSwitzerland
  2. 2.Institute for Particle Physics PhenomenologyDurham UniversityDurhamU.K.
  3. 3.PH-TH, CERNGeneva 23Switzerland
  4. 4.Institut für Kern- und TeilchenphysikTechnische Universität DresdenDresdenGermany
  5. 5.Department of Physics & AstronomyUniversity College LondonLondonU.K.

Personalised recommendations