Advertisement

The spectrum of goldstini and modulini

  • Clifford Cheung
  • Francesco D’Eramo
  • Jesse ThalerEmail author
Article

Abstract

When supersymmetry is broken in multiple sectors via independent dynamics, the theory furnishes a corresponding multiplicity of “goldstini” degrees of freedom which may play a substantial role in collider phenomenology and cosmology. In this paper, we explore the tree-level mass spectrum of goldstini arising from a general admixture of F -term, D -term, and almost no-scale supersymmetry breaking, employing non-linear superfields and a novel gauge fixing for supergravity discussed in a companion paper. In theories of F -term and D -term breaking, goldstini acquire a mass which is precisely twice the gravitino mass, while the inclusion of no-scale breaking renders one of these modes, the modulino, massless. We argue that the vanishing modulino mass can be explained in terms of an accidental and spontaneously broken “global” supersymmetry.

Keywords

Supersymmetry Breaking Supergravity Models Supersymmetric Standard Model 

References

  1. [1]
    J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1992).Google Scholar
  2. [2]
    D. Balin and A. Love, Supersymmetric gauge field theory and string theory, Taylor & Francis Group, New York U.S.A. (1994).CrossRefGoogle Scholar
  3. [3]
    E. Cremmer et al., Spontaneous symmetry breaking and Higgs effect in supergravity without cosmological constant, Nucl. Phys. B 147 (1979) 105 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  4. [4]
    E. Cremmer, S. Ferrara, L. Girardello and A. Van Proeyen, Yang-Mills theories with local supersymmetry: lagrangian, transformation laws and super-Higgs effect, Nucl. Phys. B 212 (1983) 413 [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    S.P. Martin, A supersymmetry primer, hep-ph/9709356 [SPIRES].
  6. [6]
    D.J.H. Chung et al., The soft supersymmetry-breaking lagrangian: theory and applications, Phys. Rept. 407 (2005) 1 [hep-ph/0312378] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    M.A. Luty, 2004 TASI lectures on supersymmetry breaking, hep-th/0509029 [SPIRES].
  8. [8]
    J. Bagger, E. Poppitz and L. Randall, The R axion from dynamical supersymmetry breaking, Nucl. Phys. B 426 (1994) 3 [hep-ph/9405345] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    H.-S. Goh and M. Ibe, R-axion detection at LHC, JHEP 03 (2009) 049 [arXiv:0810.5773] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    D. Shih, Pseudomoduli dark matter, JHEP 09 (2009) 046 [arXiv:0906.3346] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    B. Keren-Zur, L. Mazzucato and Y. Oz, Dark matter and pseudo-flat directions in weakly coupled SUSY breaking sectors, JHEP 09 (2009) 041 [arXiv:0906.5586] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    C. Cheung, Y. Nomura and J. Thaler, Goldstini, JHEP 03 (2010) 073 [arXiv:1002.1967] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  13. [13]
    C. Cheung, J. Mardon, Y. Nomura and J. Thaler, A definitive signal of multiple supersymmetry breaking, JHEP 07 (2010) 035 [arXiv:1004.4637] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    N. Craig, J. March-Russell and M. McCullough, The goldstini variations, JHEP 10 (2010) 095 [arXiv:1007.1239] [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    R. Argurio, Z. Komargodski and A. Mariotti, Pseudo-goldstini in field theory, Phys. Rev. Lett. 107 (2011) 061601 [arXiv:1102.2386] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    J. Thaler and Z. Thomas, Goldstini can give the Higgs a boost, JHEP 07 (2011) 060 [arXiv:1103.1631] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    H.-C. Cheng, W.-C. Huang, I. Low and A. Menon, Goldstini as the decaying dark matter, JHEP 03 (2011) 019 [arXiv:1012.5300] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    M. McCullough, Stimulated supersymmetry breaking, Phys. Rev. D 82 (2010) 115016 [arXiv:1010.3203] [SPIRES].ADSGoogle Scholar
  19. [19]
    K.I. Izawa, Y. Nakai and T. Shimomura, Higgs portal to visible supersymmetry breaking, JHEP 03 (2011) 007 [arXiv:1101.4633] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    K. Benakli and C. Moura, Brane-worlds pseudo-goldstinos, Nucl. Phys. B 791 (2008) 125 [arXiv:0706.3127] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    M.A. Luty and N. Okada, Almost no-scale supergravity, JHEP 04 (2003) 050 [hep-th/0209178] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  22. [22]
    R. Rattazzi, A. Strumia and J.D. Wells, Phenomenology of deflected anomaly mediation, Nucl. Phys. B 576 (2000) 3 [hep-ph/9912390] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    C. Cheung, F. D’Eramo and J. Thaler, Supergravity computations without gravity complications, arXiv:1104.2598 [SPIRES].
  24. [24]
    W. Siegel and S.J. Gates, Jr., Superfield supergravity, Nucl. Phys. B 147 (1979) 77 [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    S.J. Gates, M.T. Grisaru, M. Roček and W. Siegel, Superspace, or one thousand and one lessons in supersymmetry, Front. Phys. 58 (1983) 1 [hep-th/0108200] [SPIRES].Google Scholar
  26. [26]
    W.D. Linch, III, M.A. Luty and J. Phillips, Five dimensional supergravity in N =1 superspace, Phys. Rev. D 68 (2003) 025008 [hep-th/0209060] [SPIRES].ADSMathSciNetGoogle Scholar
  27. [27]
    Z. Komargodski and N. Seiberg, From linear SUSY to constrained superfields, JHEP 09 (2009) 066 [arXiv:0907.2441] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  28. [28]
    A.B. Lahanas and D.V. Nanopoulos, The road to no scale supergravity, Phys. Rept. 145 (1987) 1 [SPIRES].CrossRefADSGoogle Scholar
  29. [29]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [SPIRES].ADSMathSciNetGoogle Scholar
  30. [30]
    L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  31. [31]
    G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Clifford Cheung
    • 1
    • 2
  • Francesco D’Eramo
    • 3
  • Jesse Thaler
    • 3
    Email author
  1. 1.Berkeley Center for Theoretical PhysicsUniversity of CaliforniaBerkeleyU.S.A.
  2. 2.Theoretical Physics GroupLawrence Berkeley National LaboratoryBerkeleyU.S.A.
  3. 3.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeU.S.A.

Personalised recommendations