Advertisement

Emergent Schrödinger geometries from mass-deformed CFT

  • Hee-Cheol Kim
  • Seok KimEmail author
  • Kimyeong Lee
  • Jaemo Park
Article

Abstract

We study an M-theory solution for the holographic flow of AdS4 times Sasaki-Einstein 7-manifolds with skew-whiffing, perturbed by a mass operator. The infrared solution contains the5dimensional Schrödinger geometry after considering the gravity dual of the standard non-relativistic limit of relativistic field theories. The mass deformation of the field theory is discussed in detail for the case with 7 manifold being a round sphere.

Keywords

Gauge-gravity correspondence M-Theory Holography and condensed matter physics (AdS/CMT) 

References

  1. [1]
    D.T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schroedinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [SPIRES].ADSMathSciNetGoogle Scholar
  2. [2]
    K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  3. [3]
    C. Duval, G.W. Gibbons and P. Horvathy, Celestial Mechanics, Conformal Structures and Gravitational Waves, Phys. Rev. D 43 (1991) 3907 [hep-th/0512188] [SPIRES].ADSMathSciNetGoogle Scholar
  4. [4]
    C. Duval, M. Hassaine and P.A. Horvathy, The geometry of Schrödinger symmetry in gravity background/ non-relativistic CFT, Annals Phys. 324 (2009) 1158 [arXiv:0809.3128] [SPIRES].CrossRefzbMATHADSMathSciNetGoogle Scholar
  5. [5]
    D. Israel, C. Kounnas, D. Orlando and P.M. Petropoulos, Electric/magnetic deformations of S 3 and AdS 3 and geometric cosets, Fortsch. Phys. 53 (2005) 73 [hep-th/0405213] [SPIRES].CrossRefzbMATHADSMathSciNetGoogle Scholar
  6. [6]
    D. Orlando, S. Reffert and L.I. Uruchurtu, Classical Integrability of the Squashed Three-sphere, Warped AdS3 and Schroedinger Spacetime via T -duality, J. Phys. A 44 (2011) 115401 [arXiv:1011.1771] [SPIRES].ADSMathSciNetGoogle Scholar
  7. [7]
    S.A. Hartnoll and K. Yoshida, Families of IIB duals for nonrelativistic CFTs, JHEP 12 (2008) 071 [arXiv:0810.0298] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  8. [8]
    A. Donos and J.P. Gauntlett, Supersymmetric solutions for non-relativistic holography, JHEP 03 (2009) 138 [arXiv:0901.0818] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    A. Donos and J.P. Gauntlett, Solutions of type IIB and D = 11 supergravity with Schrödinger(z) symmetry, JHEP 07 (2009) 042 [arXiv:0905.1098] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  10. [10]
    A. Donos and J.P. Gauntlett, Schrödinger invariant solutions of type IIB with enhanced supersymmetry, JHEP 10 (2009) 073 [arXiv:0907.1761] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  11. [11]
    N. Bobev, A. Kundu and K. Pilch, Supersymmetric IIB Solutions with Schrödinger Symmetry, JHEP 07 (2009) 107 [arXiv:0905.0673] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    E. O. Colgain and H. Yavartanoo, NR CFT 3 duals in M-theory, JHEP 09 (2009) 002 [arXiv:0904.0588] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    C.P. Herzog, M. Rangamani and S.F. Ross, Heating up Galilean holography, JHEP 11 (2008) 080 [arXiv:0807.1099] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    J. Maldacena, D. Martelli and Y. Tachikawa, Comments on string theory backgrounds with non-relativistic conformal symmetry, JHEP 10 (2008) 072 [arXiv:0807.1100] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  15. [15]
    A. Adams, K. Balasubramanian and J. McGreevy, Hot Spacetimes for Cold Atoms, JHEP 11 (2008) 059 [arXiv:0807.1111] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    M. Guica, K. Skenderis, M. Taylor and B.C. van Rees, Holography for Schrödinger backgrounds, JHEP 02 (2011) 056 [arXiv:1008.1991] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    P. Kraus and E. Perlmutter, Universality and exactness of Schrödinger geometries in string and M-theory, JHEP 05 (2011) 045 [arXiv:1102.1727] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  18. [18]
    Y. Nakayama, M. Sakaguchi and K. Yoshida, Non-Relativistic M2-brane Gauge Theory and New Superconformal Algebra, JHEP 04 (2009) 096 [arXiv:0902.2204] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    K.-M. Lee, S. Lee and S. Lee, Nonrelativistic Superconformal M2-Brane Theory, JHEP 09 (2009) 030 [arXiv:0902.3857] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N =6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  21. [21]
    H. Ooguri and C.-S. Park, Supersymmetric non-relativistic geometries in M-theory, Nucl. Phys. B 824 (2010) 136 [arXiv:0905.1954] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  22. [22]
    J. Jeong, H.-C. Kim, S. Lee, E.O. Colgain and H. Yavartanoo, Schrödinger invariant solutions of M-theory with Enhanced Supersymmetry, JHEP 03 (2010) 034 [arXiv:0911.5281] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    H.-C. Kim and S. Kim, Supersymmetric vacua of mass-deformed M2-brane theory, Nucl. Phys. B 839 (2010) 96 [arXiv:1001.3153] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    S. Cheon, H.-C. Kim and S. Kim, Holography of mass-deformed M2-branes, arXiv:1101.1101 [SPIRES].
  25. [25]
    J.P. Gauntlett, J. Sonner and T. Wiseman, Quantum Criticality and Holographic Superconductors in M-theory, JHEP 02 (2010) 060 [arXiv:0912.0512] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  26. [26]
    C. Charmousis, B. Gouteraux, B.S. Kim, E. Kiritsis and R. Meyer, Effective Holographic Theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    N. Iizuka, N. Kundu, P. Narayan and S.P. Trivedi, Holographic Fermi and Non-Fermi Liquids with Transitions in Dilaton Gravity, arXiv:1105.1162 [SPIRES].
  28. [28]
    K. Goldstein, S. Kachru, S. Prakash and S.P. Trivedi, Holography of Charged Dilaton Black Holes, JHEP 08 (2010) 078 [arXiv:0911.3586] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  29. [29]
    J.P. Gauntlett, S. Kim, O. Varela and D. Waldram, Consistent supersymmetric Kaluza-Klein truncations with massive modes, JHEP 04 (2009) 102 [arXiv:0901.0676] [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    E. O. Colgain, O. Varela and H. Yavartanoo, Non-relativistic M-theory solutions based on Kähler-Einstein spaces, JHEP 07 (2009) 081 [arXiv:0906.0261] [SPIRES].CrossRefADSGoogle Scholar
  31. [31]
    B. Dolan, A new solution of D = 11 supergravity with internal isometry group SU(3) × SU(2) × U(1), Phys. Lett. B 140 (1984) 304 [SPIRES].ADSMathSciNetGoogle Scholar
  32. [32]
    A. Imaanpur and M. Naghdi, Dual Instantons in Anti-membranes Theory, Phys. Rev. D 83 (2011) 085025 [arXiv:1012.2554] [SPIRES].ADSGoogle Scholar
  33. [33]
    D. Forcella and A. Zaffaroni, Non-supersymmetric CS-matter theories with known AdS duals, arXiv:1103.0648 [SPIRES].
  34. [34]
    S. Kim, The complete superconformal index for N =6 Chern-Simons theory, Nucl. Phys. B 821 (2009) 241 [arXiv:0903.4172] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    M.K. Benna, I.R. Klebanov and T. Klose, Charges of Monopole Operators in Chern-Simons Yang-Mills Theory, JHEP 01 (2010) 110 [arXiv:0906.3008] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  36. [36]
    D. Bashkirov and A. Kapustin, Supersymmetry enhancement by monopole operators, JHEP 05 (2011) 015 [arXiv:1007.4861] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  37. [37]
    I. Bena, The M-theory dual of a 3 dimensional theory with reduced supersymmetry, Phys. Rev. D 62 (2000) 126006 [hep-th/0004142] [SPIRES].ADSMathSciNetGoogle Scholar
  38. [38]
    N. Lambert and P. Richmond, M2-Branes and Background Fields, JHEP 10 (2009) 084 [arXiv:0908.2896] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  39. [39]
    A. Hashimoto, Comments on domain walls in holographic duals of mass deformed conformal field theories, JHEP 07 (2011) 031 [arXiv:1105.3687] [SPIRES].CrossRefADSGoogle Scholar
  40. [40]
    J.L.F. Barbon and C.A. Fuertes, Ideal gas matching for thermal Galilean holography, Phys. Rev. D 80 (2009) 026006 [arXiv:0903.4452] [SPIRES].ADSGoogle Scholar
  41. [41]
    K. Balasubramanian and J. McGreevy, The particle number in Galilean holography, JHEP 01 (2011) 137 [arXiv:1007.2184] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  42. [42]
    N. Halmagyi, M. Petrini and A. Zaffaroni, Non-Relativistic Solutions of N =2 Gauged Supergravity, JHEP 08 (2011) 041 [arXiv:1102.5740] [SPIRES].CrossRefADSGoogle Scholar
  43. [43]
    S. Kachru, R. Kallosh and M. Shmakova, Generalized Attractor Points in Gauged Supergravity, arXiv:1104.2884 [SPIRES].
  44. [44]
    D. Cassani, G. Dall’Agata and A.F. Faedo, Type IIB supergravity on squashed Sasaki-Einstein manifolds, JHEP 05 (2010) 094 [arXiv:1003.4283] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  45. [45]
    J.T. Liu, P. Szepietowski and Z. Zhao, Consistent massive truncations of IIB supergravity on Sasaki-Einstein manifolds, Phys. Rev. D 81 (2010) 124028 [arXiv:1003.5374] [SPIRES].ADSGoogle Scholar
  46. [46]
    J.P. Gauntlett and O. Varela, Universal Kaluza-Klein reductions of type IIB to N =4 supergravity in five dimensions, JHEP 06 (2010) 081 [arXiv:1003.5642] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  47. [47]
    L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, The supergravity dual of N =1 super Yang-Mills theory, Nucl. Phys. B 569 (2000) 451 [hep-th/9909047] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  48. [48]
    D. Garfinkle, G.T. Horowitz and A. Strominger, Charged black holes in string theory, Phys. Rev. D 43 (1991) 3140 [SPIRES].ADSMathSciNetGoogle Scholar
  49. [49]
    M.J. Duff and J. Rahmfeld, Massive string states as extreme black holes, Phys. Lett. B 345 (1995) 441 [hep-th/9406105] [SPIRES].ADSMathSciNetGoogle Scholar
  50. [50]
    N. Bobev, N. Halmagyi, K. Pilch and N.P. Warner, Supergravity Instabilities of Non-Supersymmetric Quantum Critical Points, Class. Quant. Grav. 27 (2010) 235013 [arXiv:1006.2546] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  51. [51]
    J.E. Martin and H.S. Reall, On the stability and spectrum of non-supersymmetric AdS 5 solutions of M-theory compactified on Kähler-Einstein spaces, JHEP 03 (2009) 002 [arXiv:0810.2707] [SPIRES].CrossRefADSMathSciNetGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Hee-Cheol Kim
    • 1
  • Seok Kim
    • 1
    Email author
  • Kimyeong Lee
    • 2
  • Jaemo Park
    • 3
  1. 1.Department of Physics and Astronomy & Center for Theoretical PhysicsSeoul National UniversitySeoulKorea
  2. 2.School of PhysicsKorea Institute for Advanced StudySeoulKorea
  3. 3.Department of Physics & Center for Theoretical Physics (PCTP)POSTECHPohangKorea

Personalised recommendations