Journal of High Energy Physics

, 2011:108

UV-completion by classicalization

  • Gia Dvali
  • Gian F. Giudice
  • Cesar Gomez
  • Alex Kehagias
Open Access
Article

Abstract

We suggest a novel approach to UV-completion of a class of non-renormalizable theories, according to which the high-energy scattering amplitudes get unitarized by production of extended classical objects (classicalons), playing a role analogous to black holes, in the case of non-gravitational theories. The key property of classicalization is the existence of a classicalizer field that couples to energy-momentum sources. Such localized sources are excited in high-energy scattering processes and lead to the formation of classicalons. Two kinds of natural classicalizers are Nambu-Gold stone bosons (or, equivalently, longitudinal polarizations of massive gauge fields) and scalars coupled to energy-momentum type sources. Classicalization has interesting phenomenological applications for the UVcompletion of the Standard Model both with or without the Higgs. In the Higgless Standard Model the high-energy scattering amplitudes of longitudinal W -bosons self-unitarize via classicalization, without the help of any new weakly-coupled physics. Alternatively, in the presence of a Higgs boson, classicalization could explain the stabilization of the hierarchy. In both scenarios the high-energy scatterings are dominated by the formation of classicalons, which subsequently decay into many particle states. The experimental signatures at the LHC are quite distinctive, with sharp differences in the two cases.

Keywords

Phenomenological Models 

References

  1. [1]
    G. Dvali, S. Hofmann and J. Khoury, Degravitation of the cosmological constant and graviton width, Phys. Rev. D 76 (2007) 084006 [hep-th/0703027] [SPIRES].ADSMathSciNetGoogle Scholar
  2. [2]
    G. ’t Hooft, Graviton Dominance in Ultrahigh-Energy Scattering, Phys. Lett. B 198 (1987) 61 [SPIRES].ADSMathSciNetGoogle Scholar
  3. [3]
    I.J. Muzinich and M. Soldate, High-Energy Unitarity of Gravitation and Strings, Phys. Rev. D 37 (1988) 359 [SPIRES].ADSGoogle Scholar
  4. [4]
    D. Amati, M. Ciafaloni and G. Veneziano, Superstring Collisions at Planckian Energies, Phys. Lett. B 197 (1987) 81 [SPIRES].ADSGoogle Scholar
  5. [5]
    D. Amati, M. Ciafaloni and G. Veneziano, Classical and Quantum Gravity Effects from Planckian Energy Superstring Collisions, Int. J. Mod. Phys. A3 (1988) 1615 [SPIRES].ADSGoogle Scholar
  6. [6]
    D. Amati, M. Ciafaloni and G. Veneziano, Higher Order Gravitational Deflection And Soft Bremsstrahlung In Planckian Energy Superstring Collisions, Nucl. Phys. B 347 (1990) 550 [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    D.J. Gross and P.F. Mende, String Theory Beyond the Planck Scale, Nucl. Phys. B 303 (1988) 407 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  8. [8]
    S.B. Giddings, D.J. Gross and A. Maharana, Gravitational effects in ultrahigh-energy string scattering, Phys. Rev. D 77 (2008) 046001 [arXiv:0705.1816] [SPIRES].ADSGoogle Scholar
  9. [9]
    D. Amati, M. Ciafaloni and G. Veneziano, Can Space-Time Be Probed Below the String Size?, Phys. Lett. B 216 (1989) 41 [SPIRES].ADSGoogle Scholar
  10. [10]
    K. Konishi, G. Paffuti and P. Provero, Minimum Physical Length and the Generalized Uncertainty Principle in String Theory, Phys. Lett. B 234 (1990) 276 [SPIRES].ADSMathSciNetGoogle Scholar
  11. [11]
    E. Witten, Reflections on the fate of space-time, Phys. Today 49 (1996) 24 [SPIRES].CrossRefMathSciNetGoogle Scholar
  12. [12]
    S.B. Giddings and M. Srednicki, High-energy gravitational scattering and black hole resonances, Phys. Rev. D 77 (2008) 085025 [arXiv:0711.5012] [SPIRES].ADSGoogle Scholar
  13. [13]
    S.B. Giddings, M. Schmidt-Sommerfeld and J.R. Andersen, High energy scattering in gravity and supergravity, Phys. Rev. D 82 (2010) 104022 [arXiv:1005.5408] [SPIRES].ADSGoogle Scholar
  14. [14]
    G. Dvali and C. Gomez, Self-Completeness of Einstein Gravity, arXiv:1005.3497 [SPIRES].
  15. [15]
    C. Csáki, C. Grojean, H. Murayama, L. Pilo and J. Terning, Gauge theories on an interval: Unitarity without a Higgs, Phys. Rev. D 69 (2004) 055006 [hep-ph/0305237] [SPIRES].ADSGoogle Scholar
  16. [16]
    G. Dvali, Black holes with flavors of quantum hair?, hep-th/0607144 [SPIRES].
  17. [17]
    E. Witten, Dyons of Charge eθ/2π, Phys. Lett. B 86 (1979) 283 [SPIRES].ADSGoogle Scholar
  18. [18]
    C. Deffayet, G.R. Dvali, G. Gabadadze and A.I. Vainshtein, Nonperturbative continuity in graviton mass versus perturbative discontinuity, Phys. Rev. D 65 (2002) 044026 [hep-th/0106001] [SPIRES].ADSGoogle Scholar
  19. [19]
    A. Gruzinov, On the graviton mass, New Astron. 10 (2005) 311 [astro-ph/0112246] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    A. Nicolis and R. Rattazzi, Classical and quantum consistency of the DGP model, JHEP 06 (2004) 059 [hep-th/0404159] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  21. [21]
    A.I. Vainshtein, To the problem of nonvanishing gravitation mass, Phys. Lett. B 39 (1972) 393 [SPIRES].ADSGoogle Scholar
  22. [22]
    G. Dvali, C. Gomez and S. Mukhanov, Probing Quantum Geometry at LHC, JHEP 02 (2011) 012 [arXiv:1006.2466] [SPIRES].ADSGoogle Scholar
  23. [23]
    N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [SPIRES].ADSGoogle Scholar
  24. [24]
    I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [SPIRES].ADSGoogle Scholar
  25. [25]
    T. Banks and W. Fischler, A model for high energy scattering in quantum gravity, hep-th/9906038 [SPIRES].
  26. [26]
    G. Dvali, G. Gabadadze, M. Kolanovic and F. Nitti, Scales of gravity, Phys. Rev. D 65 (2002) 024031 [hep-th/0106058] [SPIRES].ADSMathSciNetGoogle Scholar
  27. [27]
    S.B. Giddings and S.D. Thomas, High energy colliders as black hole factories: The end of short distance physics, Phys. Rev. D 65 (2002) 056010 [hep-ph/0106219] [SPIRES].ADSGoogle Scholar
  28. [28]
    S. Dimopoulos and G.L. Landsberg, Black Holes at the LHC, Phys. Rev. Lett. 87 (2001) 161602 [hep-ph/0106295] [SPIRES].CrossRefADSGoogle Scholar
  29. [29]
    G. Veneziano, A Stringy Nature Needs Just Two Constants, Europhys. Lett. 2 (1986) 199 [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Gia Dvali
    • 1
    • 2
    • 3
    • 4
  • Gian F. Giudice
    • 3
  • Cesar Gomez
    • 5
  • Alex Kehagias
    • 6
  1. 1.Arnold Sommerfeld Center for Theoretical Physics, Fakultät für PhysikLudwig-Maximilians-Universität MünchenMünchenGermany
  2. 2.Max-Planck-Institut für PhysikMünchenGermany
  3. 3.CERN, Theory DivisionGeneva 23Switzerland
  4. 4.CCPP, Department of PhysicsNew York UniversityNew YorkU.S.A.
  5. 5.Instituto de Física Teórica UAM-CSIC, C-XVIUniversidad Autónoma de MadridMadridSpain
  6. 6.Physics DivisionNational Technical University of AthensAthensGreece

Personalised recommendations