Advertisement

The problematic backreaction of SUSY-breaking branes

  • Johan Blåbäck
  • Ulf H. Danielsson
  • Daniel Junghans
  • Thomas Van Riet
  • Timm Wrase
  • Marco Zagermann
Article

Abstract

In this paper we investigate the localisation of SUSY-breaking branes which, in the smeared approximation, support specific non-BPS vacua. We show, for a wide class of boundary conditions, that there is no flux vacuum when the branes are described by a genuine delta-function. Even more, we find that the smeared solution is the unique solution with a regular brane profile. Our setup consists of a non-BPS AdS7 solution in massive IIA supergravity with smeared anti-D6-branes and fluxes T-dual to ISD fluxes in IIB supergravity.

Keywords

Flux compactifications Superstring Vacua D-branes dS vacua in string theory 

References

  1. [1]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [SPIRES].ADSMathSciNetGoogle Scholar
  2. [2]
    M. Graña, R. Minasian, M. Petrini and A. Tomasiello, A scan for new N = 1 vacua on twisted tori, JHEP 05 (2007) 031 [hep-th/0609124] [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    J. Blåbäck et al., Smeared versus localised sources in flux compactifications, JHEP 12 (2010) 043 [arXiv:1009.1877] [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    C.P. Burgess and L. van Nierop, Bulk axions, brane back-reaction and fluxes, JHEP 02 (2011) 094 [arXiv:1012.2638] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    C.P. Burgess and L. van Nierop, Large dimensions and small curvatures from supersymmetric brane back-reaction, JHEP 04 (2011) 078 [arXiv:1101.0152] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    P. Koerber and D. Tsimpis, Supersymmetric sources, integrability and generalized-structure compactifications, JHEP 08 (2007) 082 [arXiv:0706.1244] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  7. [7]
    C. Caviezel et al., The effective theory of type IIA AdS 4 compactifications on nilmanifolds and cosets, Class. Quant. Grav. 26 (2009) 025014 [arXiv:0806.3458] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  8. [8]
    D. Cassani and A.-K. Kashani-Poor, Exploiting N = 2 in consistent coset reductions of type IIA, Nucl. Phys. B 817 (2009) 25 [arXiv:0901.4251] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    D. Roest, M-theory and gauged supergravities, Fortschr. Phys. 53 (2005) 119 [hep-th/0408175] [SPIRES].CrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    B.S. Acharya, F. Benini and R. Valandro, Fixing moduli in exact type IIA flux vacua, JHEP 02 (2007) 018 [hep-th/0607223] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  11. [11]
    P. Koerber, D. Lüst and D. Tsimpis, Type IIA AdS 4 compactifications on cosets, interpolations and domain walls, JHEP 07 (2008) 017 [arXiv:0804.0614] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    S.B. Giddings and A. Maharana, Dynamics of warped compactifications and the shape of the warped landscape, Phys. Rev. D 73 (2006) 126003 [hep-th/0507158] [SPIRES].ADSMathSciNetGoogle Scholar
  13. [13]
    P. Koerber and L. Martucci, From ten to four and back again: how to generalize the geometry, JHEP 08 (2007) 059 [arXiv:0707.1038] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    G. Shiu, G. Torroba, B. Underwood and M.R. Douglas, Dynamics of warped flux compactifications, JHEP 06 (2008) 024 [arXiv:0803.3068] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  15. [15]
    A.R. Frey, G. Torroba, B. Underwood and M.R. Douglas, The universal Kähler modulus in warped compactifications, JHEP 01 (2009) 036 [arXiv:0810.5768] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  16. [16]
    L. Martucci, On moduli and effective theory of N = 1 warped flux compactifications, JHEP 05 (2009) 027 [arXiv:0902.4031] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  17. [17]
    M.R. Douglas, Effective potential and warp factor dynamics, JHEP 03 (2010) 071 [arXiv:0911.3378] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    B. Underwood, A breathing mode for warped compactifications, arXiv:1009.4200 [SPIRES].
  19. [19]
    D. Lüst, F. Marchesano, L. Martucci and D. Tsimpis, Generalized non-supersymmetric flux vacua, JHEP 11 (2008) 021 [arXiv:0807.4540] [SPIRES].CrossRefGoogle Scholar
  20. [20]
    J. Blåbäck et al.,toappear.Google Scholar
  21. [21]
    E. Silverstein, TASI/PiTP/ISS lectures on moduli and microphysics, hep-th/0405068 [SPIRES].
  22. [22]
    P. Koerber, Lectures on generalized complex geometry for physicists, Fortschr. Phys. 59 (2011) 169 [arXiv:1006.1536] [SPIRES].CrossRefzbMATHMathSciNetGoogle Scholar
  23. [23]
    J. Scherk and J.H. Schwarz, How to get masses from extra dimensions, Nucl. Phys. B 153 (1979) 61 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  24. [24]
    N. Alonso Alberca et al., Domain walls of D = 8 gauged supergravities and their D = 11 origin, JHEP 06 (2003) 038 [hep-th/0303113] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  25. [25]
    S. Kachru, J. Pearson and H.L. Verlinde, Brane/flux annihilation and the string dual of a non-supersymmetric field theory, JHEP 06 (2002) 021 [hep-th/0112197] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  26. [26]
    R.C. Myers, Dielectric-branes, JHEP 12 (1999) 022 [hep-th/9910053] [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    I. Bena, M. Graña and N. Halmagyi, On the existence of meta-stable vacua in Klebanov-Strassler, JHEP 09 (2010) 087 [arXiv:0912.3519] [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    P. McGuirk, G. Shiu and Y. Sumitomo, Non-supersymmetric infrared perturbations to the warped deformed conifold, Nucl. Phys. B 842 (2010) 383 [arXiv:0910.4581] [SPIRES].ADSMathSciNetGoogle Scholar
  29. [29]
    B. Janssen, P. Meessen and T. Ortín, The D8-brane tied up: string and brane solutions in massive type IIA supergravity, Phys. Lett. B 453 (1999) 229 [hep-th/9901078] [SPIRES].ADSGoogle Scholar
  30. [30]
    O. De Wolfe, S. Kachru and M. Mulligan, A gravity dual of metastable dynamical supersymmetry breaking, Phys. Rev. D 77 (2008) 065011 [arXiv:0801.1520] [SPIRES].ADSGoogle Scholar
  31. [31]
    I. Bena, G. Giecold and N. Halmagyi, The backreaction of anti-M2 branes on a warped Stenzel space, JHEP 04 (2011) 120 [arXiv:1011.2195] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  32. [32]
    D. Baumann, A. Dymarsky, S. Kachru, I.R. Klebanov and L. McAllister, D3-brane potentials from fluxes in AdS/CFT, JHEP 06 (2010) 072 [arXiv:1001.5028] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  33. [33]
    A. Dymarsky, On gravity dual of a metastable vacuum in Klebanov-Strassler theory, JHEP 05 (2011) 053 [arXiv:1102.1734] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  34. [34]
    I. Bena, G. Giecold, M. Graña, N. Halmagyi and S. Massai, On metastable vacua and the warped deformed conifold: analytic results, arXiv:1102.2403 [SPIRES].
  35. [35]
    M.P. Hertzberg, S. Kachru, W. Taylor and M. Tegmark, Inflationary constraints on type IIA string theory, JHEP 12 (2007) 095 [arXiv:0711.2512] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  36. [36]
    E. Silverstein, Simple de Sitter solutions, Phys. Rev. D 77 (2008) 106006 [arXiv:0712.1196] [SPIRES].ADSMathSciNetGoogle Scholar
  37. [37]
    S.S. Haque, G. Shiu, B. Underwood and T. Van Riet, Minimal simple de Sitter solutions, Phys. Rev. D 79 (2009) 086005 [arXiv:0810.5328] [SPIRES].ADSGoogle Scholar
  38. [38]
    T. Wrase and M. Zagermann, On classical de Sitter vacua in string theory, Fortschr. Phys. 58 (2010) 906 [arXiv:1003.0029] [SPIRES].CrossRefMathSciNetGoogle Scholar
  39. [39]
    R. Flauger, S. Paban, D. Robbins and T. Wrase, Searching for slow-roll moduli inflation in massive type IIA supergravity with metric fluxes, Phys. Rev. D 79 (2009) 086011 [arXiv:0812.3886] [SPIRES].ADSGoogle Scholar
  40. [40]
    C. Caviezel et al., On the cosmology of type IIA compactifications on SU(3)-structure manifolds, JHEP 04 (2009) 010 [arXiv:0812.3551] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  41. [41]
    U.H. Danielsson, S.S. Haque, G. Shiu and T. Van Riet, Towards classical de Sitter solutions in string theory, JHEP 09 (2009) 114 [arXiv:0907.2041] [SPIRES].CrossRefADSGoogle Scholar
  42. [42]
    C. Caviezel, T. Wrase and M. Zagermann, Moduli stabilization and cosmology of type IIB on SU(2)-structure orientifolds, JHEP 04 (2010) 011 [arXiv:0912.3287] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  43. [43]
    U.H. Danielsson, P. Koerber and T. Van Riet, Universal de Sitter solutions at tree-level, JHEP 05 (2010) 090 [arXiv:1003.3590] [SPIRES].CrossRefADSGoogle Scholar
  44. [44]
    U.H. Danielsson et al., De Sitter hunting in a classical landscape, arXiv:1103.4858 [SPIRES].
  45. [45]
    X. Dong, B. Horn, E. Silverstein and G. Torroba, Micromanaging de Sitter holography, Class. Quant. Grav. 27 (2010) 245020 [arXiv:1005.5403] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  46. [46]
    D. Andriot, E. Goi, R. Minasian and M. Petrini, Supersymmetry breaking branes on solvmanifolds and de Sitter vacua in string theory, JHEP 05 (2011) 028 [arXiv:1003.3774] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  47. [47]
    M.R. Douglas and R. Kallosh, Compactification on negatively curved manifolds, JHEP 06 (2010) 004 [arXiv:1001.4008] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  48. [48]
    S. Kachru, J. Kumar and E. Silverstein, Orientifolds, RG flows and closed string tachyons, Class. Quant. Grav. 17 (2000) 1139 [hep-th/9907038] [SPIRES].CrossRefzbMATHADSMathSciNetGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Johan Blåbäck
    • 1
  • Ulf H. Danielsson
    • 1
  • Daniel Junghans
    • 2
  • Thomas Van Riet
    • 1
  • Timm Wrase
    • 3
  • Marco Zagermann
    • 2
  1. 1.Institutionen för Fysikoch AstronomiUppsala UniversitetUppsalaSweden
  2. 2.Institut für Theoretische Physik & Center for Quantum Engineering and Spacetime ResearchLeibniz Universität HannoverHannoverGermany
  3. 3.Department of PhysicsCornell UniversityIthacaU.S.A.

Personalised recommendations